Theory of Probability

Dec 9,2020

The Poisson Process

- Let N(t) = number of events that occur in time interval [0,t].
- This collection of random variables { NHD, +7,03 is said to be a Poisson Process with rate 2;5:

()
$$N(b) = 0$$

(2) Number of events that occur is disput
intervals is independent:
If (a,b] $n(c,d)$ then
 $P[N(b) - N(a) = j, N(d) - N(c) = b]$
 $= P[N(b) - N(a) = j] P[N(d) - N(c) = b].$
(3) The number of events in (a,b] only depending
on b-a.
(4) $P[N(b) = 1] = \lambda b + o(b)$
 $F(b) = 0.$
(5) $P[N(b) > 2] = o(b).$

Lemma For a Poiston process with rate
$$\lambda$$
,
 $P(N(k) = 0] = e^{\lambda k}$.
Proof: Let $P_0(k) = P(N(k) = 0]$.
 $\Rightarrow P_0(k+h) = P(N(k+h) = 0]$
 $= P(N(k+h) = N(k+h) = 0]$
 $= P(N(k+h) = N(k+h) - N(k+h) = 0]$
 $= P_0(k+h) = 0$ $P(N(k+h) - N(k+h) = 0]$
 $= P_0(k+h) - N(k+h) - N(k+h) = 0]$
 $= P_0(k+h) - N(k+h) - N(k+h) = 0]$
 $= P_0(k+h) - P_0(k) = -\lambda P_0(k+h) + o(h) P_0(k+h)$
 $= P_0(k+h) - P_0(k+h) = -\lambda P_0(k+h) + o(h) P_0(k+h)$
 $= P_0(k+h) - P_0(k+h) = -\lambda P_0(k+h) + o(h) P_0(k+h)$
 $= P_0(k+h) = Ce^{\lambda k}$
But assumption (D) of the Poisson Process was
 $= P_0(k+h) = P(N(k) = 0] = 1$
 $= P_0(k+h) = e^{\lambda k}$

Interarrival Times

"time hatered earth"
Let
$$T_n = time hetered eart n and eart n-1$$

 $T_i = time to the first event$
How is T_n distributed?
 $P[T_i > t] = P[N|t] = 0] = e^{2t}$
 $= P[T_i \le t] = 1 - P[T_i > t]$
 $F_{T_i}(t) = 1 - e^{-2t}$
 $= T_i \sim E_{XP}(\lambda)$.
 $P[T_2 > t] = E[P[T_2 > t | T_i]]$
And now since
 $P[T_2 > t | T_i = S] = P[N(t+s) - N(s) = 0 | T_i = S]$
 $= P[N(t+s) - N(s) = 0]$
 $= e^{2t}$
 $= Valu A T_i dos unt affect the distribution
of T_2 . And $T_i \sim E_{XP}(\lambda)$.$

3

Waiting Times (Arrival times)

$$S_n = arrival time of the nth event$$

 $\mp T_n$
 $S_n = \sum_{i=1}^{n} T_i$
 $\Lambda = Exp(\chi).$

=> From section 5.6, in know that

$$S_{n} \sim Gamma(n, \lambda) .$$

$$=7 \quad f_{s_{n}}(s) = \lambda e^{-\lambda s} \frac{(\lambda s)^{n-1}}{(n-1)!}$$

$$= \lambda^{n} e^{-\lambda s} \frac{s^{n-1}}{(n-1)!} \quad \text{for } s \neq 0.$$

Theorem: For a Poisson process with rate A_1 $P(N(t) = n] = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$ Iden of Proof: $P(N(t):n) = P(N(t) \ge n] - P(N(t) \ge n+1]$ $= P(S_n \le t] - P(S_{n+1} \le t].$ Ux this form to derive distribution. [4]