Theory of Probability $\operatorname{sep} 9,2020$

Permutations: counting the possible orderings of distinct objects

Combination: counting the groupings of objects when order doesn't matter.

Example:

Path 1: U UR
Path 2: RUU

Can only move up or right.
Question: How many such paths are there?

From $A \rightarrow B: 4$ rights R

$$
3 \text { ups. U }
$$

7 moves in total. Any path $: \underline{U} \underline{\cup} \underline{R} \underline{\cup} \underline{R}$
(I) $\binom{7}{4}=\left(\frac{7!}{4!3!}=\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}=7 \cdot 5=35\right.$
(II) $\frac{7!}{4!3!}$ permutations
$\hat{T}_{\text {permutation of }}$ R's

A related problem:

Question: How many paths go through node C?
M path from $A \rightarrow C$
N paths from $C \rightarrow B$, then MN paths pass though C.

$$
\begin{aligned}
& M=\binom{4}{2}=\frac{4.3}{2}=6 \\
& N=\binom{3}{2}=\frac{3 \cdot 2}{2}=3 \quad \Rightarrow M N=18 \\
& \quad \text { Note }\binom{N}{k}=\binom{N}{N-k} \quad\binom{3}{2}=\binom{3}{1} \\
& \frac{N!}{k!(N-k)!}
\end{aligned}
$$

