Throw A Pinbability Septe, 2020
Prop. 4.4 : Inclusion - Exclusion

$$P(A \cup C) = P(A) + P(C) - P(A \cap C)$$

$$P(S) = 1$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap C) - P(B \cap C) = 0$$

$$+ P(A \cap B \cap C) = 0$$

$$+ P(A \cap C) =$$

Theoretical Exercise II

Let
$$P(E) = 0.9$$

 $P(F) = 0.8$
Show that $P(E_n F) = P(EF) > .7$.
By Inclusion - Exclusion,
 $P(E \cup F) = P(E) + P(F) - P(EF)$
 $= 0.9 + 0.8 - P(EF)$
 $P(E \cup F) = 1.7 - P(EF)$
Since $P(E \cup F) \leq 1$, it must be that $P(EF) > .7$
More generally, in have Bonferroni's Inequality:
 $P(EF) > P(E) + P(F) - 1$
 $P(E \cup F) = P(E) + P(F) - P(EF)$
Since $P(E \cup F) \leq 1$ is here that
 $P(E) + P(P) - P(EF) \leq 1$
 $= 2$
 $P(EF) > P(E) + P(F) - 1$.

15 members of a soccer team, each is either blue collar/white collar, and either R/D/I.