Theory of Probability \quad /21/20
Example Sin (suction 2.5)

- Mix up hats, and distribute randomly buck to the people.

Question: What is the probability that no one receives their own hat?

Easiest approach Use inclusion-exclusion to compute $\underbrace{1-\mathbb{P}\binom{\text { at least one }}{\text { pocsan gets their own hat }}}_{\text {complementary probability. }}=\underbrace{\substack{\mathbb{P} \text { no one gets } \\ \text { their own hat }}}_{\text {Why is this difficult }}$
Note Every permutation of the hats to compute on its own? has the same probability as every other permutation.

Probability that Person 1 doesn't peek their own

$$
h_{a t}=\frac{N-1}{N}
$$

Let $E_{i}=$ event that person i selects the ir own hat
$P\left(\bigcup_{i=1}^{N} E_{i}\right)=$ probability that at least one person gets their own hat

Use inclusion -exclusion:

$$
\begin{gathered}
P\left(\bigcup_{1}^{N} E_{i}\right)=\sum_{i=1}^{N} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{2}} E_{i_{2}}\right)+\ldots+ \\
(-1)^{N+1} P\left(E_{1} E_{2} \cdots E_{N}\right) .
\end{gathered}
$$

Compute $P\left(E_{i_{1}} \ldots E_{i_{n}}\right) \leftarrow$ probability that the $i_{1}, i_{2}, i_{3}, \ldots i_{n}$ th people get their own hats.
E_{i} is the cut that person i_{1} gets their hat.
Count the number of ways that people $i_{1}, i_{2} \ldots i_{n}$ can receive their own hats:

- n people recièr their on hat
- N total people.

Each of th $N-n$ remaining hats can h distributed to the $N-n$ remaining people.

$$
\begin{aligned}
& \Rightarrow P(N-n)!\text { orderings } \\
& \Rightarrow P\left(E_{i_{1}} E_{i_{2}} \ldots E_{i_{n}}\right)=\frac{(N-n)!}{N!} \Leftarrow \text { total number of } \\
& \begin{array}{l}
\text { ways to distribute } \\
\text { the hats. }
\end{array}
\end{aligned}
$$

Note: $\quad P\left(E_{1} E_{3} E_{7}\right)=P\left(E_{2} E_{9} E_{15}\right)$
How many terms an in the sum:

$$
\begin{aligned}
\sum_{i_{1} L i_{2} L-L i_{n}} P(\underbrace{E_{i_{1}} E_{i_{2}} E_{i_{3}} \cdots E_{i_{n}}}_{n \text { events }}) & \Rightarrow\binom{N}{n} \text { terms } \\
& =\frac{N!}{n!(N-n)!} \\
\Rightarrow \sum_{i_{1}<\cdots c i_{n}} P\left(E_{i_{1}} E_{i_{2}} \cdots E_{i_{n}}\right) & =\binom{N}{n} \frac{(N-n)!}{N!} \\
& =\frac{1}{n!}
\end{aligned}
$$

Back to inclusion-exclusoun:

$$
\begin{aligned}
& P(\text { no one gets their hat })=1-P\binom{\text { at last one passer }}{\text { gets their hat }} \\
&=1-P\left(\bigcup_{i=1}^{N} E_{i}\right) \\
&=1-\left(\sum_{i=1}^{N} P\left(E_{i}\right)-\sum_{i_{1}, i_{2}} P\left(E_{i_{1}} E_{c_{2}}\right)+\ldots+(-1)^{N+1} P\left(E_{1} E_{2} \cdots E_{N}\right)\right) \\
&=1-\left(\frac{1}{1!}-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\frac{1}{5!}-+(-1)^{N+1} \frac{1}{N!}\right) \\
&=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\ldots \approx \sum_{j=0}^{N} \frac{(-1)^{j}}{j!} \approx e^{-1} \\
&=\frac{1}{e} \simeq 368
\end{aligned}
$$

$$
\begin{aligned}
& P(E \cup F) \\
& =P(E)+P(F)-P(E \cap F) \\
& P(E \cup F \cup G) \\
& =P(E)+P(F)+P(G) \\
& \quad-P(E \cap F)-P(E \cap G)-P(F \cap G) \\
& \quad+P(E F G) .
\end{aligned}
$$

