Theory of Probability Sep 28,2020
Events E & F are independent if

$$P(EF) = P(E) P(F)$$

Property IF E, F are independent then so are the
two events E and FC.
If we consider the multiple cants E,..., En, this
set of events are independent if for any
subset $E_{i_1,...,i_r}$, with ren, we have that
 $P(E_{i_1} E_{i_2} \cdots E_{i_r}) = P(E_{i_1}) \cdot P(E_{i_2}) \cdots P(E_{i_r})$.
Example 4F
Independent trials : a sequence of expressions, each
of whose atome is independent from the others.
Integrite an infinite sequence of trials, each trial
has probability of success p, and finite $1-p=g$.
(c) What is the probability that there is at least
are success in the first in trials?
 $= 1 - P(F,F,F_3\cdots,F_n) = 1 - P(F,P(F,E)\cdots P(F_n))$
 $= 1 - (1-p)^n$.

 \mathbb{N}

(b) What is the pobability of exactly k successes
in the first n trials?

$$E E S E S S \dots E S E$$

$$P(d = a particular) = p^{k} (1-p)^{n-k}$$

$$P(d = a particular) = p^{k} (1-p)^{n-k}$$

$$f = d = soch argangement of k = successes is $\binom{n}{k}$.

$$P(exactly k = successes) = \binom{n}{k} p^{k} (1-p)^{n-k}$$
(c) Probability that all trials an successes?

$$P(n = succes) = \lim_{n \to \infty} p^{n} = \begin{cases} 0 & \text{if } 0 \le p \le 1 \\ 1 & \text{if } p \ge 1 \end{cases}$$

$$Example 45$$$$

Consider the first trial: Let E = event that un get n successes before on failurs.

We are interested in

$$P(E) = P_{n,m}$$

$$= P(EF) + P(EF^{c})$$
where $F = event trial 1 is a success$

$$= P(Succes m \cap success term) + P(filler an \cap between term)$$

$$= P(filler an \cap between term) + P(filler an \cap between term)$$

$$= P(filler an \cap between term) + P(filler an \cap between term)$$

$$= P(filler an \cap between term) + (1-p)(P_{n,m-1}) + P(filler an \cap between term)$$

$$= P(filler an + (1-p)(P_{n,m-1}) + for n > 1, m > 1.$$

$$Recoverence velectors)$$
We also know the boundary conditions:

$$P_{n,o} = D = P_{n,m} = 1$$

$$P_{n,o} = D = P_{n,m} = 1$$

$$P_{n,o} = P(filler an + (1-p)(P_{n,m-1}) + (1-p)(P_{n,m-1}) + (1-p)(P_{n,m-1})$$

$$= P(filler an + (1-p)(P_{n,m-1}) + (1-p)(P_{n,m-1}) + (1-p)(P_{n,m-1}) + (1-p)(P_{n,m-1})$$

$$= P(filler an + (1-p)(P_{n,m-1}) + (1-$$

Before we get to the last tril, we had to have
hat
$$\forall n$$
 successs, otherwise we're had in failuns and low?

$$P(k \text{ successes in}) = \binom{m+n-1}{k} p^{k} (l-p)^{m+n-1-k}$$

$$P(k \text{ successes in}) = \binom{m+n-1}{k} p^{k} (l-p)^{m+n-1-k}$$

$$P(k \text{ successes in}) p^{k} (l-p)^{m+n-1-k}$$

$$P(k \text{ successes in}) p^{k} (l-p)^{m+n-1-k}$$

$$F(k \text{ successes in})$$