Theory of Probability
Event $E \& F$ are independent if

$$
P(E F)=P(E) P(F)
$$

Prop If E, F ar independent then so an the two events E and F^{C}.

If m consider the multiple events E_{1}, E_{n}, this set of ends an -impendent if for any subset $E_{i_{1}}, \ldots, E_{i_{r}}$, with $r \leq n$, wa have that

$$
P\left(E_{i_{1}} E_{i_{2}} \cdots E_{i_{r}}\right)=P\left(E_{i_{1}}\right) \cdot P\left(E_{i_{2}}\right) \cdots P\left(E_{i_{r}}\right) .
$$

Example 4F
Independent trails: a sequence of experiments, each of whose atone is indpundunt from the other.

Imagines an infinite sequence of traits, each trail has probability of success) p, and fails $1-p=q$.
(a) What is the probability that then is at least ore success in the first n trail?

$$
\begin{aligned}
\Rightarrow 1-P\left(F_{1} F_{2} F_{3} \ldots F_{n}\right) & =1-P\left(F_{1}\right) P\left(F_{1}\right) \ldots P\left(F_{n}\right) \\
& =1-(1-P)^{n} .
\end{aligned}
$$

(b) What is the probability of exactly k successes in the first n trials?

$$
\underline{F} \underline{S} \underline{S} \underline{S} \ldots \underline{S}
$$

n trials

$$
P\left(\begin{array}{c}
\text { of a particular } \\
\text { arramjement of } \\
k \text { successes) }
\end{array}\right)=p^{k}(1-p)^{n-k}
$$

\# of such arrangements of h successes is $\binom{n}{h}$.

$$
\Rightarrow P(\text { exactly } h \text { success s) })=\binom{n}{k} p^{k}(1-p)^{n-k^{2}} .
$$

(c) Probability that all trains an successes?

$$
\begin{aligned}
& P(n \text { success) in } n \text { trill) })=p^{n} . \\
& P(\text { all success })=\lim _{n \rightarrow \infty} p^{n}= \begin{cases}0 & \text { if } 0 \leq p<1 \\
1 & \text { if } p=1\end{cases}
\end{aligned}
$$

Example 4 J
Probability of success is p, frilun 1-p. What is the probability of n successes before m failuns.
Pascal's Solution:
Consider the first trial: Let $E=$ evert that m get n successes hefor m failuns.

Wc are interested in

$$
\begin{aligned}
P(E) & =P_{n, m} \\
& =P(E F)+P\left(E F^{c}\right)
\end{aligned}
$$

where $F=$ event triil l is a success
Recurrence velation

We also know the boundang condition:

$$
\begin{aligned}
& P_{n, 0}=0, \quad P_{0, m}=1 \\
& P_{1, m}=p P_{0, m}+(1-p) P_{1, m-1} \\
& P_{1,1}=p P_{0,1}+(1-p) P_{1,0}
\end{aligned}
$$

Fermati Solution
If \underline{n} successes occur hefir \underline{m} failuns:

$$
\geqslant n \text { suceesses }
$$

S/F S/F S/F S/F S/F S/F

$$
\text { or } \geqslant m \text { fuilurs. }
$$

$n+m$ trials
$\Rightarrow \geqslant n$ successes in the firt $n+m-1$ trinls.

$$
\begin{aligned}
& =p P_{n-1, m}+(1-p) P_{n, m-1} \\
& \Rightarrow P_{n, m}=p P_{n-1, m}+(1-p) P_{n, m-1} \text { for } n \geqslant 1, m \geqslant 1 \text {. }
\end{aligned}
$$

Before me get to the last trail, in had to hare hat $\geqslant n$ success, otherwin win had m failuns and lost.

$$
\begin{gathered}
P\binom{k \text { successes in }}{n+m-1 \text { tin is }}=\binom{m+n-1}{k} p^{k}(1-p)^{m+n-1-k} \\
P_{n, m}=\sum_{k=n}^{m+n-1}\binom{m+n-1}{k} p^{k}(1-p)^{m+n-1-k} \quad \text { since }
\end{gathered}
$$

the cunt of winning with h sucesses is mutually exclusion from the punt of winning with k^{\prime} successes if $k \neq k$ '.

Solving the nousnuce alctonship:

$$
\underbrace{\begin{array}{l}
P_{n, m}=p P_{n-1, n}+(1-p) P_{n, m-1} \\
\\
n \leq 10
\end{array}}_{\text {linear equation in } 3 \text { unknowns: }}
$$

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & \cdots \\
0 & 1 & \cdots & \cdots \\
-(1-p)-p & 1 & & 0 \\
& & & 0
\end{array}\right)\left(\begin{array}{c}
\\
p_{1,0} \\
p_{0,1} \\
p_{1,1} \\
p_{2,0} \\
p_{0,2} \\
p_{1} \\
\vdots \\
p_{10,10}
\end{array}\right)=\left(\begin{array}{l}
\\
0 \\
1 \\
i \\
1 \\
1 \\
\end{array}\right)
$$

