Theory of Probability
Call $Q(E)=P(E \mid F) \quad($ for a fixed $F)$, then Q satisfies the axioms of probability.

$$
P(E \mid F)=\frac{P \mid E, F)}{P(F)}
$$

By conditioning on F, m an effectively "redefining" the sample space S. to me just F.

$$
\begin{aligned}
Q(E) & =P(E \mid F) \\
Q(E \mid G) & =\frac{Q(E G)}{Q(G)}=\frac{P(E G \mid F)}{P(G \mid F)}=\frac{P(E G F)}{P(F)} \frac{P(F)}{P(G F)} \\
& =\frac{P(E G F)}{P(G F)}=P(E \mid G F) .
\end{aligned}
$$

Conditional Independence
E_{1}, E_{2} an conditionally independent with respect to F if $\quad P\left(E_{1} \mid E_{2} F\right)=P\left(E_{1} \mid F\right)$
this is equivalent to $P\left(E_{1} E_{2} \mid F\right)=P\left(E_{1}|F| P\left(E_{2} \mid F\right)\right.$

$$
\Leftrightarrow Q\left(E_{1} E_{2}\right)=Q\left(E_{1}\right) Q\left(E_{2}\right)=
$$

Ex 3.33 (self tot)
Let E, F, G be independent aunts:
Show that $P\left(E \mid F G^{c}\right)=P(E)$

$$
P\left(E \mid F G^{c}\right)=\frac{P\left(E F G^{c}\right)}{P\left(F G^{c}\right)}=\frac{P(E) P(\neq P) P\left(G^{c}\right)}{P(F) P\left(b^{c}\right)}=P(E) .
$$

Ex 3.35 (sicif test)
An urn contains $4 \mathrm{nd}, 5$ white, 6 blue, and 7 green balls. Randomly choose 4 balls (without replant),

$$
\begin{aligned}
& P(\underbrace{\text { all white balls }}_{\text {white }} \left\lvert\, \underbrace{\text { all ball ard }}_{\text {same }} \begin{array}{l}
\text { same color }
\end{array}\right. \\
& =\frac{P(\text { white AND same })}{P(\text { same })}=\frac{P(\text { white })}{P(\text { same })} \\
& P(\text { white })=\frac{\binom{5}{4}}{\binom{22}{4}} \quad P(\text { same })=\frac{1+\binom{5}{4}+\binom{6}{4}\binom{7}{4}}{\binom{22}{4}} \\
& P(\text { white } 1 \text { same })=\frac{\left(\begin{array}{l}
5
\end{array}\right)}{1+\binom{5}{4}+\binom{6}{4}+\binom{7}{4}}=\frac{5}{1+5+15+35}=\frac{5}{56}
\end{aligned}
$$

Ex 3.27 (self test)
An usn contains IR and IB ball.
Questivi: At stage n, show that the probability that urn contain) i red balls is $\frac{1}{n+1}$, for $i=1, \ldots, n+1$.

$3 R, 1 B$	$1 / 3$
$2 R, 2 B$	$1 / 3$
$1 R, 3 B$	$1 / 3$

Use Mathematical Induction.
(1) Showed it was tire for $n=0,1,2$
(2) Assume the result holds after stage n.
(3) Assuming (2), show the result is true for stage $n+1$,

Compute $P\left(\begin{array}{ccc}i & \text { red balls } \\ & \text { stage } n+1\end{array}\right)$

$$
\begin{aligned}
& =\frac{1}{n+2-i}+\frac{i-1}{n+2} \frac{1}{n+1} \\
& =\frac{n+2-i+i-1}{(n+2)(n+1)}=\frac{n+1}{(n+2)(n+1)}=\frac{1}{n+2}
\end{aligned}
$$

If F_{1}, \ldots, F_{n} an mutually exclusion, and $U F_{j}=S$

$$
\begin{aligned}
P(E) & =\sum_{j} P\left(E F_{j}\right) & P\left(E \mid F_{j}\right)=\frac{P\left(E F_{j}\right)}{P\left(F_{j}\right)} \\
& =\sum_{j} P\left(E \mid F_{j}\right) P\left(F_{j}\right) . & \Rightarrow P\left(E F_{j}\right)=P\left(E\left|F_{j}\right| P\left(F_{j}\right)\right.
\end{aligned}
$$

This idea is often used in conjunction with Bayes's Theonm.

