Theory I Probability
Call
$$Q(E) = P(E|F)$$
 (for a fixed F), then
 Q satafin the axions of probability.
 $P(E|F) = \frac{P(E,F)}{P(F)}$
By conditioning on F, in an effectively
"redefining" the simple space S. to
be just F.
 $Q(E) = P(E|F)$
 $Q(E|G) = \frac{Q(EG)}{Q(G)} = \frac{P(EGF)}{P(GF)} = \frac{P(EGF)}{P(F)} \frac{P(F)}{P(F)}$
 $= \frac{P(EGF)}{Q(GF)} = P(E|GF).$
Conditional Independence
 E_{i}, E_{i} are conditionally independent with respect to
F if $P(E_{i}|E_{i}F) = P(E_{i}|F)$
this is equivalent to
 $P(E_{i}E_{i}) = Q(E_{i}) = Q(E_{i}) Q(E_{i}).$

$$\frac{E \times 3.33}{E \times 15} (\text{self tot})$$
Let $\hat{E}_{1}F_{1}G$ be independent events:
Show that $P(E \mid FG^{c}) = P(E)$

$$P(E \mid FG^{c}) = \frac{P(E FG^{c})}{P(FG^{c})} = \frac{P(E) P(F) P(F^{c})}{P(FG^{c})} = P(E).$$

An urn contains 4 rd, 5 white, 6 blue, and
7 green balls. Randomly choose 4 balls (without replacent)
P(all white balls | all ball arc)?
white same

$$= \frac{P(white ANP same)}{P(same)} = \frac{P(white)}{P(same)}$$
P(white) = $\frac{\binom{5}{4}}{\binom{22}{4}}$
P(same) = $\frac{1 + \binom{5}{4} + \binom{6}{4} \binom{7}{4}}{\binom{22}{4}}$

$$P(white | same) = \frac{|\xi|}{|+(\frac{5}{4})+(\frac{6}{4})+(\frac{7}{4})} = \frac{5}{1+5+15+35} = \frac{5}{56}$$

Ex 3.27 (self test)

An use contains IR and 1B ball.

Question: At stage n, show that the probability that urn contains i red balls is $\frac{1}{n+1}$, for i=1,...,n+1.

Use Mathematical Induction.

() Showed it was true for M=0,1,2

Assume the result holds after stage n.
(3) Assuming (2), show the result is true for stage n+1.

3

Compute
$$P(i \text{ red balls})$$

$$= P(i \text{ red balls} | i \text{ red balls}) P(i \text{ red balls})$$