Theory of Probability
Random Variables

Discrete random variables:
X is a discrete random var. if it can tine on a countable set of values $x_{1}, x_{2} \ldots \rightarrow$

Probability mass function $p\left(x_{i}\right)=P\left(X=x_{i}\right)$
(density)
(Cumulation) Distribution function

$$
\begin{aligned}
F(x) & =P(X \leq x) \\
& =\sum_{x_{i} \leq x} P\left(X=x_{i}\right) \\
& =\sum_{x_{i} \leq x} p\left(x_{i}\right)
\end{aligned}
$$

- F is non-decreasing

$$
\Rightarrow \quad F(y) \geqslant F(x) \quad \text { if } \quad y>x
$$

Example: Diu $P(X=1)=\frac{1}{6}$

$$
\begin{aligned}
& P(X=6)=1 / 6 \\
& F(3)=P(X \leq 3)=\frac{1}{2} \\
& F(3.5)=P(X \leq 3,5)=1 / 2 .
\end{aligned}
$$

Expected value:

$$
\begin{aligned}
E(X) & =\sum_{i=1}^{\infty} x_{i} \cdot P\left(X=x_{i}\right) \\
& =\sum_{i=1}^{\infty} x_{i} p\left(x_{i}\right)
\end{aligned}
$$

Thoroticl Ex: 4.2
If X has distribution function $F, P(X \leq x)=F(x)$, thin what is the distribution function of e^{x} ?
$\Rightarrow Y=e^{X}$ is another random variole

$$
\begin{aligned}
G(y) & =P(Y \leq y) \\
& =\underbrace{P\left(e^{X} \leq y\right)}_{F(\log y)} \\
& =\underbrace{P(X \leq \log y)}=F(\log y)
\end{aligned}
$$

$\Rightarrow e^{X}=Y$ has distribution function $G(y)=F(\log y)$.
Self-test Ex: 4.3
A coin comes up heads with probubility p. Flip this coin until eitur heads or tails has occurnd twin. Find the expected number of flips Let $X=$ the number of $f(i p s$ until 2 head, or 2 trill.

$$
\begin{aligned}
P(X=0) & =0 \\
P(X=1) & =0 \\
P(X=2) & =P(H H)+P(T T) \\
& =p^{2}+(1-p)^{2} \\
P(X=3) & =P(H T T)+P(H T H)+P(T H H)+P(T H T) \\
& =1-P(X=2)=1-p^{2}-(1-p)^{2} \\
P\left(X \frac{5}{=} 4\right) & =0 \\
E(X) & =2 \cdot P(X=2)+3 \cdot P(X=3) \\
& =2\left(p^{2}+(1-p)^{2}\right)+3\left(1-p^{2}-(1-p)^{2}\right) \\
& =3-P^{2}-(1-p)^{2} .
\end{aligned}
$$

If $p=0, E(x)=3-0-(1-0)^{2}=2$

$$
\begin{aligned}
& p=1, \quad E(x)=3-1-0=2 \\
& p=\frac{1}{2}, \quad E(x)=3-\frac{1}{4}-\left(\frac{1}{4}\right)=2.5
\end{aligned}
$$

Self test 4.4
Suppose in han M fumilies, n_{i} of which han i childrn, $\sum_{i=1}^{r} n_{i}=M$.
Let $X=$ the number of children in a randomly selected family.

Also consider, instead of picking a family at random, pick a child at random. Then an

$$
C=\sum_{i=1}^{n} n_{i} \cdot i
$$

Let $Y=$ the number of childan in the family it the randomly selected child.

Goal: Show that $E(Y) \geqslant E(X)$.

$$
\begin{aligned}
& P(X=i)=P(\text { chook a family with })=\frac{n_{i}}{M} . \\
& E(X)=\sum_{i=1}^{r} i \cdot \frac{\underbrace{\frac{n_{i}}{M}}}{} \underset{P(X=i)}{ } \\
& P(Y=i)=? \\
& =\frac{i \cdot n_{i}}{c} \\
& E(Y)=\sum_{i=1}^{r} i \frac{n_{i} \cdot i}{C}=\sum_{i=1}^{r} \frac{i^{2} n_{i}}{c} \\
& M=n_{i} \\
& C=E i n i \\
& E(x)=\sum i \cdot \frac{n_{i}}{\sum n_{i}} \\
& E(Y)=\sum \frac{i^{2} n_{i}}{\sum i n_{i}} \\
& =\sum i \cdot \frac{n_{i}}{\sum n_{i}} \\
& =\sum i \cdot \frac{i n_{i}}{\sin n_{i}}
\end{aligned}
$$

Calculate in_{i}

$$
\begin{aligned}
\frac{\frac{i n_{i}}{\sum i n_{i}}}{\frac{n_{i}}{\sum n_{i}}} & =\frac{\frac{j n_{j}}{\sum i n_{i}}}{\frac{n_{j}}{\sum n_{i}}}=\frac{j n_{j}\left(\sum n_{i}\right)}{n_{j}\left(\sum i n_{i}\right)} \\
& =j \frac{\sum n_{i}}{\sum i n_{i}}
\end{aligned}
$$

?. Discussisu of how to finish mond to campuswin...

