Theory of Probability
October 14,2020

Bernoulli random variable X :

$$
\begin{aligned}
& P[x=1]=p \\
& P[x=0]=1-p . \quad \\
& E[x]=p \\
& \operatorname{Var}[x]=E\left[(x-p)^{2}\right]=E\left[x^{2}-2 x p+p^{2}\right] \\
&=p-2 p^{2}+p^{2} \\
&=p-p^{2}=p(1-p) .
\end{aligned}
$$

If X_{i} is a Bernoulli random variable, then
$X=X_{1}+x_{2}+\ldots+X_{n}$ is a binomial (n, p) random variable

$$
\begin{gathered}
P[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k} \\
E[x]=n p . \\
\operatorname{Var}[x]=n p(1-p) .
\end{gathered}
$$

Theortical Exerin 4.15
A family has n children with probability $\alpha p^{n} \geqslant 1$, with $0 \leqslant \alpha \leq(1-p) / p$.

$$
P[C=k]=\alpha p^{k}
$$

(a) What proportion of families have no children?

$$
\begin{align*}
P[C=0] & =1-P[C \geqslant 1] \\
& =1-\sum_{k=1}^{\infty} \alpha p^{k} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& =1-\underbrace{\sum_{k=1}^{\infty} \alpha p^{k} .} \\
& S=p+p^{2}+p^{3}+ \\
& p S=p^{2}+p^{2}+p^{2}+. . \\
& (S-p S)=p \\
& S_{n}-p S_{n}=p-p^{n+1} \\
& S(1-p)=p \quad \Rightarrow \\
& S_{n}=\sum_{1}^{n} p^{k} \\
& p S_{n}=\sum_{1}^{n} p^{k+1} \\
& \Rightarrow S_{n}(1-p)=p-p^{n+1} \\
& S_{n}=p / 1-p-p^{n+1} \frac{1}{1-p} \\
& \lim _{n \rightarrow \infty} S_{n}=\frac{p}{1-p} \text { since } p^{n+1} \rightarrow 0 \text {. linin } p<1 . \\
& =1-\frac{\alpha p}{1-p} . \\
& \Rightarrow P[c=0]=1-\frac{\alpha p}{1-p}=\frac{1-p-\alpha p}{1-p}=\frac{1-(1+\alpha) p}{1-p} .
\end{aligned}
$$

(b) If each child is equally likely to be a boy or a girl, what proportion of familis consist of h boys?

$$
\begin{aligned}
P[B=k]= & P[B=k \mid C=k] P[C=k] \\
& +P[B=k \mid C=k+1] P[C=k+1] \\
& +\ldots \\
= & \sum_{j=k}^{\infty} P[B=k \mid C=j] \alpha p^{j}
\end{aligned}\left\{\begin{array}{l}
\text { Law of } \\
\text { Total } \\
\text { Probability }
\end{array}\right.
$$

$$
\begin{aligned}
& =\sum_{j=k}^{\infty}\left(\binom{j}{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{j-k}\right) \alpha p^{j} \\
& =\sum_{j=k}^{\infty}\binom{j}{k}\left(\frac{1}{2}\right)^{j} \alpha p^{j} \\
& =\sum_{j=k}^{\infty}\binom{j}{k}\left(\frac{p}{2}\right)^{j} \alpha
\end{aligned}
$$

Self-test Execcir 13
7 Person panel of judges, each makes cornet judgment independently with Probability 0.7.

$$
P\left[J_{i}=1\right]=0.7 . \quad P\left[J_{i}=0\right]=0.3
$$

Decision by majority, what is the probability the panel males the cornet decision?

$$
\begin{aligned}
& \quad P[\underbrace{P}\left[\begin{array}{l}
J \\
J_{1}+J_{2}+\ldots+J_{7}
\end{array} \geqslant 4\right]=? \\
& \Rightarrow P[J \geqslant 4]=P[J=4]+P[J=5]+P[J=6] \\
& \\
& =\sum_{k=4}\binom{7}{k}(0.7)^{k}(0.3)^{7-k}+P[J=7] . \\
& \\
& =0.87
\end{aligned}
$$

Given that 4 judy agneed, what is the probability that the panel made the cornet decvion?

$$
\begin{aligned}
& P[J=4 \mid J=4 \text { or } J=3] \\
& =\frac{P[J=4 \cap(J=4 \text { or } J=3)]}{P[J=4 \text { or } J=3]} \\
& =\frac{P[J=4]}{P[J=4]+P[J=3]} \\
& =\frac{\binom{7}{4}(0.7)^{4}(0.3)^{3}}{\binom{7}{4}(0.7)^{4}(0.3)^{3}+\binom{7}{3}(0.7)^{3}(0.3)^{4}} \\
& =\frac{1}{1+\frac{(7 / 3)}{(7 / 4)} \frac{(6.7)^{3}}{(0.7)^{4}} \frac{(0.3)^{4}}{(0.3)^{3}}} \\
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \\
& =\frac{n!}{(n-k)!(n-(n-k))!} \\
& \begin{array}{l}
=\frac{1}{1+\frac{.3}{.7}}=\frac{.7}{.7+.3}=7 \\
\lfloor J=5 \text { or } J=2]
\end{array} \\
& =\frac{P[J=5]}{P[J=5]+P(J=2]} \\
& =\frac{\binom{7}{5}(0.7)^{5}(0.3)^{2}}{\binom{7}{5}(0.7)^{5}(0.3)^{2}+\binom{7}{2}(0.7)^{2}(0.3)^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{1+\frac{(1.7)^{2}}{(0.7)^{83}} \frac{(0.3)^{83}}{(0.3)^{2}}} \\
& =\frac{1}{1+\left(\frac{0.3}{0.7}\right)^{3}} \approx .93
\end{aligned}
$$

