Lecture 1

September 9th 2020

1 Counting

(1) Roll a die: Outcomes are $1,2,3,4,5,6$
(2) Roll a die, choose a and card from playing deck:

Die: 6 possibilities
Cards: 52 distinct cards.
Total number of die-card pairs: $6 \cdot 52=312$ possibilities
In general, if we have M experiments, each with n_{i} distinct outcomes, then we have $n_{1} \cdot n_{2} \cdot n_{3} \cdot n_{4} \cdot \ldots \cdot n_{M}$ total possible outcomes.

Back to our example,
$n_{1}=6$
$n_{2}=52$

2 Permutations - ordering distinct object.

EXAMPLE:

How many ways can I order 6 numbers: Fill in the blanks :
$\underline{6} \cdot \underline{5} \cdot \underline{4} \cdot \underline{3} \cdot \underline{2} \cdot \underline{1}=6!=720 \leftarrow$ possibilities
Factorial $: \mathrm{n}!=\mathrm{n} \cdots(n-2) \cdot \ldots \cdot(n-(n-1))=\prod_{j=1}^{n} j$
Convention: $0!=1$

EXAMPLE:

11 people on a soccer team, each person plays one position.
$11 \cdot 10 \cdot \ldots \cdot 2 \cdot 1=11!=39,916,800$
EXAMPLE:
Given 4 textbooks on math, 3 on English.
7 total textbooks means 7 ! possible orderings of all 7 textbooks
Sub-example If all math textbooks come first, then English textbooks:
$\underline{M} \cdot \underline{M} \cdot \underline{M} \cdot \underline{M} \cdot \underline{E} \cdot \underline{E} \cdot \underline{E} \Rightarrow 4!* 3!=24 \cdot 6=144$ orderings

EXAMPLE:

How many orderings of the letters in PEPPER are there? If each letter is assumed to be distinct, them are $6!=720$ possibilities.

If the E's are not distinct, then we must divide 720 by the number of permutation of the E's:

$$
\frac{720}{2!}=360=\frac{6!}{2!}
$$

Likewise, if the P's are not distinct, then we must divide by the number of permutations of this letter : 3!

So the number of distinct words that can be made using the letters in PEPPER is:

$$
\frac{6!}{2!\cdot 3!}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=60
$$

In general, if we have n objects, of which n_{1} are alike, n_{2} are alike, $\ldots n_{r}$ are alike, then the number of distinct permutations is

$$
\frac{n!}{n_{1}!\cdot n_{2}!\cdot \ldots \cdot n_{r}!}
$$

3 Combinations - How many distinct unordered groups can be found from a set of objects.

EXAMPLE:

Take the letters A,B,C,D,E.
How many groups of 3 letter can be form?

$$
\frac{5 \cdot 4 \cdot 3}{3!}=\frac{60}{6}=10
$$

In general, the number of unordered sets of r distinct object that can be formed from n distinct elements is

$$
\binom{n}{r}=\frac{n \cdot(n-1) \cdot(n-2) \ldots(n-r+1)}{r!} \cdot \frac{(n-1) \cdot(n-r-1) \ldots 1}{(n-r) \cdot \ldots \cdot 1}=\frac{n!}{(n-r)!} \cdot \frac{1}{r!}=\frac{n!}{(n-r)!\cdot r!}
$$

we usually call it " n choose r '
APPLICATION: Binomial Theorem
Binomial Theorem: $(x+y)^{n}=\sum_{k=0}^{n} x^{k} y^{n-k}$
(*) $\quad(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$
Ex: $(x+y)^{2}=\binom{2}{0} x^{2}+\binom{2}{1} 2 x y+\binom{2}{2} y^{2}$
Proof (By induction):
(1) prove for $n=0,1,2$ we prove it by calculation
(2) Assume $\left({ }^{*}\right)$ is true for $n=m$
(3) Show that $\left(^{*}\right)$ also holds for $n=m+1$

We show it as follow:

$$
\begin{aligned}
(x+y)^{m+1} & =(x+y)(x+y)^{m}=\sum_{k=0}^{m+1}\binom{m+1}{k} x^{k} \cdot y^{m+1-k} \\
& =(\text { by assumption }) \\
& =(x+y) \sum_{k=0}^{m}\binom{m}{k} x^{k} \cdot y^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k} x^{k+1} \cdot y^{m-k}+\sum_{k=0}^{m}\binom{m}{k} x^{k} \cdot y^{m+1-k} \\
& =\sum_{k=1}^{m+1}\binom{m}{k-1} x^{k} \cdot y^{m-(k-1)}+\sum_{k=0}^{m}\binom{m}{k} x^{k} \cdot y^{m+1-k} \\
& =x^{m+1}+\sum_{k=1}^{m}\binom{m}{k-1} x^{k} \cdot y^{m+1-k}+y^{m+1}+\sum_{k=1}^{m}\binom{m}{k} x^{k} \cdot y^{m+1-k} \\
& =x^{m+1}+\sum_{k=1}^{m}\left(\binom{m}{k-1}+\binom{m}{k}\right) x^{k} \cdot y^{m+1-k}+y^{m+1}
\end{aligned}
$$

And

$$
\begin{gathered}
\binom{m}{k-1}+\binom{m}{k}=\frac{m!}{(m-(n-1))!} \cdot \frac{m!}{(m-k)!k!} \\
=\frac{m!\cdot}{(m+1-k)!k!}+\frac{m!(m+1-k)}{(m+1-k)!k!} \\
=\frac{m!\cdot k+m!(m+1)-m!\cdot k}{(m+1-k)!k!} \\
=\frac{(m+1)!}{(m+1-k)!k!} \\
=\binom{m+1}{k}
\end{gathered}
$$

In the end we have:

$$
\begin{aligned}
& x^{m+1}+\sum_{k=1}^{m}\binom{m+1}{k} x^{k} \cdot y^{m+1-k}+y^{m+1} \\
= & \binom{m+1}{m+1} x^{m+1} \cdot y^{0}+\sum_{k=1}^{m}\binom{m+1}{k} x^{k} \cdot y^{m+1-k}+\binom{m+1}{0} x^{0} \cdot y^{m+1-0} \\
= & \sum_{k=0}^{m+1}\binom{m+1}{k} x^{k} \cdot y^{m+1-k}
\end{aligned}
$$

Till here proving is finished.

Zoom Lecture Example:

Part I:

A bug wants to go from A to B (shown in Figure 1), how many different paths for it to get there?

Figure. 1
From A to B, we need to move 4 rights (R) and 3 up (U), and there are seven moves in total. For example, one way to reach B is URURURR. There are two ways to solve this:

- Combination

The problem can be transformed into asking how many different ways for $4 R$ s and 3 Us to fit in 7 slots, so we first want to choose 4 slots for R , then the rest is for Us by default.
We have

$$
\binom{7}{4}=\frac{7!}{3!\times 4!}=\frac{7 \times 6 \times 5}{3 \times 2 \times 1}=35
$$

- Permutation

The problem can be transformed into how many different ways 4Rs and 3 Us can be ordered (note that R is repeated four times, and U is repeated 3 times). Then we have

$$
\frac{7!}{3!\times 4!}=\frac{7 \times 6 \times 5}{3 \times 2 \times 1}=35
$$

Part II:

We still have the same graph, but this time there is a point C in the middle of A and B . The question is how many different paths from A to B that goes through C?

Figure. 2

In this problem, we need to find the number of paths(M) from A to C, then we need find the number of paths(N) from C to B , then we multiply M by N .

For M, there are two Rs and two Us in total, therefore by using the same method from above, we get:

$$
M=\binom{4}{2}=\frac{4!}{2!\times 2!}=\frac{4 \times 3}{2 \times 1}=6
$$

For N , there are two Rs and one U , therefore by using the same method, we get:

$$
\begin{gathered}
N=\binom{3}{2}=\frac{3!}{2!\times 1!}=\frac{3}{1}=3 \\
M \times N=6 \times 3=18
\end{gathered}
$$

$$
\text { [Note: } \left.\binom{n}{k}=\binom{n}{n-k} \text {, and }\binom{3}{1}=\binom{3}{2}\right]
$$

