Lecture 2

September 14th 2020

1 Multinomial coefficients

Multinomial coefficient is an analogous of binomial coefficient in that they correspond directly to the counting problems.
Imagine we have N distinct objects:

$$
0_{1}, 0_{2}, \ldots, 0_{N}
$$

sort into M bins: N_{i} objects into bin i (Order of each bin does not matter)

$$
\begin{gathered}
\sum_{i=1}^{M} n_{i}=N \\
\binom{N}{n_{1}} *\binom{N-n_{1}}{n_{2}} *\binom{N-n_{1}-n_{2}}{n_{3}} * \ldots *\binom{N-n_{1}-\ldots-n_{M}-1_{1}}{n_{M}}
\end{gathered}
$$

$($ Filling bin 1$) *($ Filling bin 2$) *($ Filling bin 3$) * \ldots *($ Filling bin $M)$

$$
\begin{gathered}
=\frac{N!}{n_{1}!\left(N-n_{1}\right)!} * \frac{\left(N-n_{1}\right)!}{n_{2}!\left(N-n_{1}-n_{2}\right)!} * \frac{\left(N-n_{1}-n_{2}\right)!}{n_{3}!\left(N-n_{1}-n_{2}-n_{3}\right)!} * \ldots * \frac{n_{M}}{n_{M}!* 1!} \\
=\frac{N!}{n_{1}!n_{2}!n_{3}!\ldots n_{M}!}=\binom{N}{n_{1}, n_{2}, n_{3}, \ldots, n_{M}}(\text { Multinomial Coefficient })
\end{gathered}
$$

Multinomial Coefficient is the number of ways to sort N distinct objects into bins, each having n_{i} objects.

2 Extension to Multinomial Theorem

$$
\left(x_{1}+x_{2}+\ldots+x_{r}\right)^{n}=\Sigma\binom{n}{\left(n_{1}, n_{2}, \ldots, n_{r}\right)} * x_{1}^{n_{1}} * x_{2}^{n_{2}} * \ldots * x_{r}^{n_{r}}
$$

Here, Σ is sum over $n_{1}, n_{2}, \ldots, n_{r}$ such that $n_{1}+n_{2}+\ldots+n_{r}=n$

3 Sample Spaces and Events

Sample space (S) is the set of possible outcomes of an experiment.
Ex: Roll two dice

$$
S=\{(1,1),(2,1),(3,1), \ldots,(6,6)\}
$$

A collection of outcomes is called an event. An event is a subset of S .

Ex: Let E and F be two events defined on the sample space S .
1-1) Define a new event $G=E \cup F$ where E is a set of the first die $=2$, and F is a set of the second die less than 3 .

Here, \cup is all outcomes that are contained in E or F .
$E=\{(2,1),(2,2), \ldots,(2,6)\}$
$F=\{(1,1),(2,1),(3,1), \ldots(6,1),(1,2),(2,2), \ldots,(6,2)\}$
Therefore, $G=E \cup F=\{(2,1),(2,2), \ldots,(2,6),(1,1),(1,2),(3,1),(3,2), \ldots,(6,1),(6,2)\}$
1-2) Define another new event $H=E \cap F$

Here, \cap is outcomes that are contained in both E and F.
Therefore, $H=E \cap F=\{(2,1),(2,2)\}$
Definition: Mutually Exclusive
We say E and F are mutually exclusive if
$E \cap F=\{ \}$ (empty set)
$=\emptyset$ (the null set)
Other properties of set theory useful for probability
Multiple events: $G=\cup_{i=1}^{n} E_{i}$
Complement: $E^{c}=$ all outcomes that are not in E

Here, $U=E \cup E^{c}, E \cap E^{c}=\emptyset$

Here, Yellow part is: $A \cup B$, Blue part is: $A \cap C$

4 Set Operation Laws

- Commutative Law: $E \cup F=F \cup E, E \cap F=F \cap E$
- Associative Law: $(E \cup F) \cup G=E \cup(F \cup G),(E \cap F) \cap G=E \cap(F \cap G)$
- Distributive Law: $(E \cup F) \cap G=(E \cap G) \cup(F \cap G)$

4.1 DeMorgan's Laws

DeMorgan's Law: the following laws could be combined into DeMorgan's Laws as such:
$\left(\cup_{i=1}^{n} E_{i}\right)^{c}=\cap_{i=1}^{n} E_{i}^{c}$
$\left(\cap_{i=1}^{n} E_{i}\right)^{c}=\cup_{i=1}^{n} E_{i}^{c}$

Hint:

- Multinomial Coefficient: number of ways to group n objects into groups of $n_{1}, n_{2}, . ., n_{r}$ object, with $n_{1}+n_{2}+\ldots+n_{r}=n$.
- Binomial Coefficient: number of ways to group n objects into groups of n_{1}, n_{2} object, with $n_{1}=k$ and $n_{2}=n-k$.

5 Graphical representation of DeMorgan's laws

1. $\left(\cup_{i=1}^{n} E_{i}\right)^{c}=\cap_{i=1}^{n} E_{i}^{c}$

$A \cup B$

A^{c}

$(A \cup B)^{c}$

B^{c}

$A^{c} \cap B^{c}$

6 Example problems

Example 1

Prove that if $E \subset F$, then $F^{c} \subset E^{c}$.
This can be proved with a Venn Digram.

We can see that $F^{c} \subset E^{c}$

Example 2

Simplify $(E \cup F)\left(E \cup F^{c}\right)$ using a Venn Digram

We can see that the common area is exactly E

7 Textbook Example:

1.Ten children are to be divided into an A team and a B team of 5 each. The A team will play in one league and the B team in another. How many different divisions are possible?

Solution: There are $\frac{10!}{5!5!}=252$ possible divisions.
2.In order to play a game of basketball, 10 children at a playground divide themselves into two teams of 5 each. How many different divisions are possible?

Solution: Note that this example is different from the previous example because now the order of the two teams is irrelevant. That is, there is no A and B team, but just a division consisting of 2 groups of 5 each. Hence, the desired answer is $\frac{10!/(5!5!)}{2!}=126$.

