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1 Section 2.5: Sample Space Having Equally Likely
Outcomes

1.1 Introduction

In many experiments, it is natural to assume that all outcomes in the sample
space are equally likely to occur. That is, consider an experiment whose sample
space S is a finite set, say, S = 1, 2, ..., N . Then it is often natural to assume
that P(1) = P(2) = · · · = P(N). From above, we say P(i) = 1/N (i = 1,2,...,N).

1.2 Definition

Put the conclusion that we got in 1.1 into more general cases is that if we
assume that all outcomes of an experiment are equally likely to occur, then
the probability of any event E equals the proportion of outcomes in the sample
space that are contained in E.
P(E)= (the number of outcomes in E) / (the number of outcomes in S)

1.3 Examples

Problem. If two dice are rolled, what is the probability that the sum of the
upturned faces will equal 7?

There are total 6*6= 36possible outcomes which are equally likely. Since
there are 6 possible outcomes—namely, (1, 6), (2,5), (3, 4), (4, 3), (5, 2), and
(6, 1)—that result in the sum of the dice being equal to 7, the desired proba-
bility is 6/36 = 1/6 .

Ex2:
If 3 balls are “randomly drawn” from a bowl containing 6 white and 5 black

balls, what is the probability that one of the balls is white and the other two
black?

RMK: We can solve this problem in two ways. In general, When the exper-
iment consists of a random selection of k items from a set of n items, we have
the flexibility of either letting the outcome of the experiment be the ordered
selection of the k items or letting it be the unordered set of items selected.
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Ans:
1)Ordered: The sample space consists of 11 · 10 · 9 = 990 outcomes. There

are 6·5·4 = 120 outcomes in which the first ball selected is white and the other
two are black; similar for the other two cases. Therefore, accroding to the
definition, the probability is (120+120+120)/990 = 4/11.

2)Unordered: From this point of view, there are(
11

3

)
= 165

outcomes in the sample space. Now, each set of 3 balls corresponds to 3! out-
comes when the order of selection is noted. As a result, if all outcomes are
assumed equally likely when the order of selection is noted, the probability is(

6
1

)(
5
2

)(
11
3

) = 4/11

.

2 Section 2.7: Probability as a Measure of Belief

2.1 Introduction

Up until this point, our interpretation of the word ”probability” has been ex-
clusively linked to the chance that that a particular result of an experiment
will take place if the experiment is repeated many times. However, we’ve seen
the word ”probability” used in other ways; namely, in situations of belief. For
example, consider the statements, ”There is a 90 percent probability that Shake-
speare actually wrote Hamlet, or ”The probability that Oswald acted alone in
assassinating Kennedy is .8. How do we interpret these statements?

The most simple and natural interpretation is that the probabilities referred
to are measures of the individual’s degree of belief in the statements that they
are making. In other words, the individual who made the statements is very sure
that Oswald acted alone, and even more sure that Shakespeare wrote Hamlet.
The idea of probability as a measure of the degree of one’s belief in a statement
is known as the personal or subjective view of probability. Consider the fol-
lowing problem.

Problem. Suppose that in a 7-horse race, you believe that each of the first
2 horses has a 20 percent chance of winning, horses 3 and 4 have a 15 percent
chance, and the remaining 3 horses have a 10 percent chance each. Would it be
better for you to wager at even money that the winner will be one of the first
three horses or to wager, again at even money, that the winner will be one of
the horses 1, 5, 6, and 7?
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Solution. On the basis of your personal probabilities concerning the out-
come of the race, your probability of winning the first bet is .2 + .2 + .15 = .55,
whereas it is .2 + .1 + .1 + .1 = .5 for the second bet. Hence, the first wager is
more attractive.

Note that when we assume that a person’s subjective probabilities are per-
fectly consistent with the axioms of probability, we are considering an idealized,
rather than realistic, person. For example, if we were to ask someone what they
thought the chances were of
(a) rain today,
(b) rain tomorrow,
(c) rain both today and tomorrow,
(c) rain either today or tomorrow,
it’s quite possible that, after some deliberation, they might answer 30 percent,
40 percent, 20 percent, and 60 percent as answers. However, note that these
answers are not consistent with the axioms of probability.
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