Random Variables and Expected Value

Molly McCanny and Faisal Al-Asad

October 5, 2020

Random Variables

Unlike regular variables which are set to a fixed number, Random Variables are not designated to a single number. In other terms, A Random Variable is a function defined on a sample space. An example of a random variable would be stating a value X to be equal to the result from rolling a die.

When it comes to notation, Capital letters are used to represent random variables (i.e $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) and possible values of a random variable are lower case (i.e $\mathrm{x}, \mathrm{y}, \mathrm{z}$)

Discrete Random Variables

A random variable that can take on at most a countable number of values is a discrete random variable.

The following two functions are helpful to know when dealing with random variables:
a- Probability Mass Function(Density function): $p(a)=P(X=a)$
b- Cumulative Distribution Function: $F(x)=P(X \leq x)$

Equation (a) states that the probability of $a, p(a)$, is equal to the probability that $\mathrm{X}=\mathrm{a}$. Equation (b) states that the Cumulative Distribution Function of x is equal to the probability that X is less than or equal to X .
For example, referencing the example of rolling a die:
a- $p(3)=P(X=3)=1 / 6$
b- $\mathbf{F}(\mathbf{3})=\mathbf{P}(\mathbf{X} \leq 3)=1 / 2$

Another way of writing the cumulative distribution function is in terms of the
mass function which leads you to:

$$
F(X)=P(X \leq x)=\sum_{x_{i} \leq x} p\left(x_{i}\right)
$$

It is also worth noting that If X can take on values $x_{1}, x_{2}, x_{3} \ldots$ then

$$
\sum_{i=1}^{\infty} p\left(x_{i}\right)=1
$$

Now take an example where you have a random variable X and $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4$ as possible values for X . Also consider $\mathrm{p}(\mathrm{x} 1)=1 / 4, \mathrm{p}(\mathrm{x} 2)=1 / 2, \mathrm{p}(\mathrm{x} 3)=1 / 8$, $p(x 4)=1 / 8$.
Then $\mathrm{F}(\mathrm{x})$, a piece-wise function:

$$
F(x)= \begin{cases}0 & x<x_{1} \\ 1 / 4 & x \in\left[x_{1}, x_{2}\right) \\ 3 / 4 & x \in\left[x_{2}, x_{3}\right) \\ 7 / 8 & x \in\left[x_{3}, x_{4}\right) \\ 1 & x \in\left[x_{4}, \infty\right)\end{cases}
$$

Expected Values:

The expected value is the weighted average of a random variable.

$$
E(x)=\sum_{i=1}^{\infty} x_{i} P\left(X=x_{i}\right)=\sum_{i=1}^{\infty} x_{i} p\left(x_{i}\right)
$$

Example: Rolling a die

$$
\begin{aligned}
& \begin{array}{l}
x_{1}=1 \\
x_{2}=2 \\
\cdot \\
\cdot \\
x_{6}=6
\end{array} \\
& \qquad P\left(X=x_{i}\right)=1 / 6=p(x) \\
& E(x)=\sum_{i=1}^{6} x_{i} p\left(x_{i}\right)=1 \times 1 / 6+2 \times 1 / 6 \ldots 6 \times 1 / 6=21 / 6=7 / 2
\end{aligned}
$$

Example(Self-test 4.3): A coin comes up heads with probability p. Flip this coin until either heads or tails has occurred twice. Find the expected number of flips.

Let $X=$ the number of flips until 2 heads or 2 tails

$$
\begin{aligned}
& P(X=0=0 \\
& P(X=1)=0 \\
& P(X=2)=P(H H)+P(T T)=p^{2}+(1-p)^{2} \\
& P(X=3)=P(H T T)+P(H T H)+P(T H H)+P(T H T)=1-p^{2}-(1-p)^{2} \\
& P(X=4)=0 \\
& E(X)=2 \times P(X=2)+P(X=3) \\
& =2\left(p^{2}+(1-p)^{2}\right)+3\left(1-p^{2}-(1-p)^{2}\right) \\
& =3-p^{2}-(1-p)^{2} \\
& \text { If } p=0, E(X)=3-0-(1-0)^{2}=2 \\
& p=1, E(X)=3-1-0=2 \\
& p=1 / 2, E(X)=3-1 / 4-1 / 4=2.5
\end{aligned}
$$

Additional Example 1

Q: Two cubical dice are thrown and their scores added together.
If $\mathrm{X}=$ "The sum of the scores on the two dice", what is $\mathrm{P}(\mathrm{X}$ is divisible by 4)?

A: the Sample Space $\mathrm{S}=2,3,4,5,6,7,8,9.10,11,12$ and 4,8 and 12 are the only numbers divisible by 4 in $\mathrm{S} . \mathrm{P}(\mathrm{X}=4)=3 / 36, \mathrm{P}(\mathrm{X}=8)=5 / 36$, $\mathrm{P}(\mathrm{X}=12)=1 / 36 . \mathrm{P}(\mathrm{X}$ is divisible by 4$)=1 / 4$

Additional Example 2

Q: Two cubical dice are thrown and their scores added together.
If $\mathrm{X}=$ "sum of the scores on the two dice", and $\mathrm{P}(\mathrm{X}=\mathrm{x})=1 / 18$. What is the value of x ?
A: $\mathrm{P}(\mathrm{X}=3)=1 / 18$ and $\mathrm{P}(\mathrm{X}=11)=1 / 18$. so $\mathrm{x}=3$ or $\mathrm{x}=11$

