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1 Introduction

This paper covers all the topics that were covered on the 21st October, for
Professor Mike O Neil’s Theory of Probability class.

2 Other Discrete Probability Distributions

2.1 The geometric random variable

We suppose that independent trials, each with probability p, where 0 < p <
1, of success are performed until a success occurs. If we let X equal the
number of trials that are required to do this then,
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P (X = n) = (1− p)n−1p where n = 1, 2.....
The aforementioned equation holds true because, in order for X to equal

n, it is necessary and sufficient that the first n− 1 trials are failures and the
nth trial is a success. The equation then follows since the outcomes of the
successive trials are assumed to be independent.

Since:

∞∑
n=1

P (X = n) = p

∞∑
n=1

(1− p)n−1 =
p

1− (1− p)
= 1

It follows that, a success will eventually occur with probability 1. Any
random variable X, whose probability mass function is given by:
P (X = n) = (1− p)n−1p
is said to be a geometric random variable with parameter p.

Question An urn contains N white and M black balls. Balls are randomly
selectedm one at a time, until a black one is obtained. If we assume that each
ball selected is replaced before the next one is drawn, what is the probability
that:
(a) exactly n draws are needed?
(b) at least k draws are needed?

Solution If we let X be the number of draws needed to select a black ball,
then X satisfies the probability mass function as given by the geometric ran-
dom variable above with p = M

M+N
.

(a) P (X = n) = ( N
M+N

)n−1 M
M+N

= MNn−1

(M+N)n

(b)

P (X ≥ k) =
M

M +N

∞∑
n=k

(
N

M +N
)n−1

=
M

M+N
( N
M+N

)k−1

1− N
M+N
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= (
N

M +N
)k−1

Question Find the expected value and variance of a geometric random
variable.

Solution Let’s take q = 1− p, we have:

E[X] =
∞∑
i=1

iqi−1p

=
∞∑
i=1

(i− 1 + 1)qi−1p

=
∞∑
i=1

(i− 1)qi−1p+
∞∑
i=1

qi−1p

=
∞∑
j=0

jqjp+ 1

=

q
∞∑
j=1

jqj−1p+ 1

=
qE[X] + 1

giving us:
pE[X] = 1

E[X] =
1

p

To determine Var(X), we first compute E[X2]. With q = 1− p, we have
that:

E[X2] =
∞∑
i=1

i2qi−1p
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=
∞∑
i=1

(i− 1 + 1)2qi−1p

=
∞∑
i=1

(i− 1)2qi−1p+
∞∑
i=1

qi−1p+
∞∑
i=1

2(i− 1)qi−1p

=
∞∑
j=0

j2qjp+ 2
∞∑
j=1

jqjp+ 1

=
qE[X2] + 2qE[X] + 1

Using, E[X] = 1
p
, the equation for E[X2] yields,

pE[X2] =
2q

p
+ 1

Hence,

E[X2] =
2q + p

p2
=
q + 1

p2

giving the result,

V ar(X) =
q + 1

p2
− 1

p2
=

q

p2
=

1− p
p2

2.2 The negative binomial random variable

Suppose that independent trials, each having probability p, 0 < p < 1, of
being a success, are performed until a total of r successes is accumulated. If
we let X equal the number of trials required, then:

P (X = n) =

(
n− 1

r − 1

)
pr(1− p)n−r

where
n = r, r + 1...

The aforementioned equation follows because, in order for success to occur
at the nth trial, there must be r− 1 successes in the first n− 1 trials and the
nth trial must be a success. The probability of the first event is:
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(
n− 1

r − 1

)
pr−1(1− p)n−r

and the probability of the second is p; thus by independence, the given
equation is established. To verify that a total of r successes must eventually
be accumulated, we can prove analytically that:

∞∑
n=r

P (X = n) =
∞∑
n=r

(
n− 1

r − 1

)
pr(1− p)n−r = 1

Question The Banach match problem: At all times, a pipe-smoking math-
ematician carries 2 matchboxes- 1 in his left-hand pocket and one in his right-
hand pocket. Each time he needs a match, he is equally likely to take it from
either pocket. Consider the moment when the mathematician first discovers
that one of his matchboxes is empty. If it is assumed that both matchboxes
initially contained N matches, what is the probability that there are exactly
k matches, k = 0,1,....N, in the other box?

Solution Let E denote the event that the mathematician discovers his
right-hand matchbox is empty and there are k matches left in his left-hand
pocket at the time. Now, this event will occur if and only if the (N+1) choices
of the right-hand matchbox is made at the (N +1+N −k)th trial. Therefore
we see from the preceeding equation that:

P (E) =

(
2N − k
N

)
1

2

(2N−k+1)

Since there is an equal probability that the left-hand box is first discovered
to be empty, the final probability is twice the value given above,and is given
by:

P (E) =

(
2N − k
N

)
1

2

(2N−k)

Question Give the expected value and the variance of a negative binomial.
random variable with parameters r and p.
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Solution We have:

E[Xk] =
∞∑
n=r

nk
(
n− 1

r − 1

)
pr(1− p)n−r

since n
(
n−1
r−1

)
= r
(
n
r

)
=
r

p

∞∑
n=r

nk−1
(
n

r

)
pr+1(1− p)n−r

by setting m = n+1

=
r

p

∞∑
m=r

(m− 1)k−1
(
m− 1

r

)
pr+1(1− p)m−(r+1)

=
r

p
E[(y − 1)k−1]

where Y is a negative binomial random variable with parameters, r+1, p.
Setting k = 1 in the preceding equation yields:

E[X] =
r

p

Setting k = 2 in the equation for E[Xk] and using the formula for the
expected value of a negative binomial random variable gives:

E[X2] =
r

p
E[Y − 1]

r

p
(
r + 1

p
− 1)

Therefore,

V ar(X) =
r

p
(
r + 1

p
− 1)− (

r

p
)2

= r
1− p
p2

6



2.3 The hypergeometric random variable

Suppose that a sample of size n is to be randomly chosen(without replace-
ment) from an urn containing N balls, of which m are white, and N-m are
black. If we let X denote the number of white balls selected then:

P (X = i) =

(
m
i

)(
N−m
n−i

)(
N
n

)
for i = 0,1,2,...n

A random variable X whose probability mass function is given by the
above for some values of n,N,m are said to be a hypergeometric random
variable.

Example An unknown number, say N, of animals inhabit a certain region.
To obtain some information about the size of the population, ecologists often
perform the following experiment: They first catch a number, say m, of these
animals, mark them in some manner and release them. After allowing the
marked animals to disperse throughout the region, a new catch of size, say n,
is made. Let X denote the number of marked animals in the second capture.
If we assume that the population of the animals in the region remain fixed
between the time of the two catches and that each time an animal was caught
it was equally likely to be any of the remaining uncaught animals, it follows
that X is a hypergeometric variable such that:

P (X = i) =

(
m
i

)(
N−m
n−i

)(
N
n

) = Pi(N)

Suppose now that X is observed to equal i. Then, since Pi(N) repre-
sents the probability of an observed event when there are actually N animals
present in the region, it would appear that a reasonable estimate of N would
be the value of N that maximises Pi(N). Such an estimate is called the Max-
imum Likelihood Estimate. The maximisation of Pi(N) can be done most
simply by first noting that:

Pi(N)

Pi(N − 1)
=

(N −m)(N − n)

N(N −m− n+ i)

Now the preceding ratio is greater than 1 if and only if,
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(N −m)(N − n) ≥ N(N −m− n+ i)

or equivalently if:

N ≤ mn

i

Thus Pi(N) is first increasing and then decreasing and reaches its maxi-
mum at the largest integral value not exceeding mn

i
. This value is the maxi-

mum likelihood for N.

Question Determine the expected value and the variance of X, a hyperge-
ometric random variable with parameters n, N and m.

Solution

E[Xk] =
n∑
i=0

ikP (X = i)

=
n∑
i=1

ik
(
m
i

)(
N−m
n−i

)
Nn

Using the identities,

i

(
m

i

)
= m

(
m− 1

i− 1

)
and

n

(
N

n

)
= N

(
N − 1

n− 1

)
, we obtain:

E[Xk] =
mn

N

n∑
i=1

ik−1
(
m−1
i−1

)(
N−m
n−i

)(
N−1
n−1

)
=
mn

N

n−1∑
j=0

(j + 1)k−1

(
m−1
j

)(
N−m
n−i−j

)(
N−1
n−1

)
=

nm

N
E[(Y + 1)k−1]
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where Y is a hypergeometric random variable with parameters n-1, N-1,
and m-1. Hence upon setting k = 1, we have:

E[X] =
mn

N

Upon setting k = 2 in the equation for E[Xk], we obtain:

E[X2] =
mn

N
E[Y + 1]

=
mn

N
[
(n− 1)(m− 1)

N − 1
+ 1]

, where the final equality uses our preceding result to compute the expected
value of the hypergeometric variable Y. Because E[X] = mn

N
, we conclude

that:

V ar(X) =
mn

N
[
(n− 1)(m− 1)

N − 1
+ 1− mn

N
]

Letting p = m
N

and using the identity:

m− 1

N − 1
=
Np− 1

N − 1
= p− 1− p

N − 1

shows that:

V ar(X) = np[(n− 1)p− (n− 1)
1− p
N − 1

+ 1− np]

= np(1− p)(1− n− 1

N − 1
)

2.4 Bonus: The Zeta(or Zipf) distribution

A random variable is said to have a zeta(sometimes called Zipf) distribution
if its probability mass function is given by:

P (X = k) =
C

kα+1

k = 1,2... for some value α > 0. Since the sum of the foregoing probabilities,
must equal 1 we have that:

C = [
∞∑
k=1

(
1

k
)α+1]−1
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2.5 Expected value of sum of random variables

Proposition 9.1 First we need to prove that E[X] =
∑
s∈S

X(s)p(s) (Propo-

sition 9.1) given that the distinct values for X are xi and that for each i, Si
is the event that X = xi, or Si = {s : X(s) = xi}
.

Proof

E[X] =
∑
i

xiP{X = xi}

=
∑
i

xiP{Si}

=
∑
i

xi
∑
s∈Si

p(s)

=
∑
i

∑
s∈Si

xip(s)

=
∑
i

∑
s∈Si

X(s)p(s)

=
∑
s∈S

X(s)p(s)

Note: The final equality follows because the union of mutually exclusive
events S1, S2, ... is S

This is intuitive because the expected value, which is the weighted average
of the possible values of X, each weighted by the probability that X assumes
that value, should equal a weighted average of the values X(s), s ∈ S each
weighted by the probability that s is the outcome of the experiment.

Example Now let’s consider an example that illustrates the above propo-
sition. Suppose that two coins are flipped independently, with a probability
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of p that heads come up. Let X denote the number of heads obtained.

P (X = 0) = P (t, t) = (1− p)2 (1)

P (X = 1) = P (h, t) + P (t, h) = 2p(1− p) (2)

P (X = 0) = P (h, h) = p2 (3)

(4)

By definition, E[X] = 0 · (1− p)2 + 1 · 2p(1− p) + 2·2 = 2p

Now, we find out if this agrees with the right hand side of the equation
of Proposition 9.1:
Since s, the outcome of the experiment,∑
s∈S

X(s)p(s) = X(h, h)p2 +X(t, t)(1− p)2 +X(h, t)p(1− p) +X(t, h)(1− p)p

(5)

= 2p2 + 0 + p2p + p− p2 (6)

= 2p (7)

Corollary 9.2 Now, we can move on and prove that the expected values
of a sum of random variables is equal to the sum of their expected values.
(Corollary 9.2)
Let X and Y be two random variables.Then Z = X + Y is also a random
variable. Let s ∈ S be an individual outcome in the sample space. Then
Z(s) = X(s) + Y (s) We now show that E[Z] = E[X + Y ] = E[X] + E[Y ].

E[Z] =
∑
s∈S

Z(s)p(s) by Proposition 9.1 (8)

=
∑
s∈S

(X(S) + Y (s))p(s) (9)

=
∑
s∈S

X(s)p(s) +
∑
s∈S

Y (s)p(s) (10)

= E[X] + E[Y ] (11)

Note that this can be generalized into E[
n∑
i=1

Xi] =
n∑
i=1

E[Xi],

where Z =
n∑
i=1

Xi
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Example Consider the expected value of the sum obtained when n fair
dice are rolled.
Let X be the sum. We can represent X by

X =
n∑
i=1

Xi

where Xi is the value on die i. Since any value of Xi is equally likely,

E[Xi] =
6∑
i=1

i(
1

6
) = 3.5

Thus, by Corollary 9.2,

E[Xi] = E[
n∑
i=1

Xi] =
n∑
i=1

E[Xi] = 3.5n

Let’s verify this with the case where n=2.
With two dice, X can take on any integer from 2 to 12, inclusive.P (X = 2) =
1/36 P (X = 3) = 2/36
P (X = 4) = 3/36 P (X = 5) = 4/36
P (X = 6) = 5/36 P (X = 7) = 6/36
P (X = 8) = 5/36 P (X = 9) = 4/36
P (X = 10) = 3/36 P (X = 11) = 2/36
P (X = 12) = 1/36
Hence,

E[Xi] = E[
n∑
i=1

Xi]

= 1∗0+2∗1+3∗2+4∗3+5∗4+6∗5+7∗6+12∗0+11∗1+10∗2+9∗3+8∗4
36

= 252
36

= 7 = 3.5 · 2

2.6 Properties of the cumulative distribution function

Recall: For the distribution function F of X, F (b) denotes the probability
that the random variable X takes on a value less than or equal to b: F (x) =
P (X ≤ b)
There are four important properties of the cumulative distribution function
F :
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1. F is a nondecreasing function, meaning that if a < b, then F (a) ≤ F (b).

2. limb→∞ F (b) = 1

3. limb→−∞ F (b) = 0

4. F is right continuous, meaning that for any b and any decreading se-
quence bn, n ≥ 1, that converges to b, limn→∞ F (bn) = F (b)

Proofs of properties Property 1 follows because for a < b, the event
{X ≤ a} is contained in the event {X ≤ b}. Property 2 follows because
if bn increases to infinity, then the events {X ≤ bn} are increasing events
whose union is the event {X < ∞}. Thus, by the continuity property of
probabilities,

lim
n→∞

P{X ≤ bn} = P{X <∞} = 1

Similarly, property 3 follows because if bn decreases to negative infinity,
{X ≤ bn} are decreasing events whose intersection is the event {X < −∞}.

lim
n→∞

P{X ≤ bn} = P{X < −∞} = 0

Property 4 follows because if bn decreases to b, then {X ≤ bn}, n ≥ 1 are
decreasing events whose intersection is the event {X ≤ b}. The continuity
property yields

lim
n→∞

P{X ≤ bn} = P{X ≤ b}

Example Consider the following distribution function of the random vari-
able X:

F (x) =



0 x < 0,
x
2

0 ≤ x < 0.5
2
3

1 ≤ x < 2
11
12

2 ≤ x < 3

1 3 ≤ x

(12)
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Compute (a) P{X < 3}, (b) P{X = 1}, (c) P{X > 1
2
}, and (d)

P{2 < X ≤ 4}

(a) P{X < 3} = limn→∞ P{≤ 3− 1
n
} = limn→∞ F

(
3− 1

n

)
= 11

12

(b)

P{X = 1} = P{X ≤ 1} − P{X < 1} (13)

= F (1)− lim
n→∞

F (1− 1

n
) =

2

3
− 1

2
=

1

6
(14)

(c)

P{X >
1

2
} = 1− P{X ≤ 1

2
(15)

= 1− F (
1

2
) (16)

= 1−
1
2

2
=

3

4
(17)

(d) P{2 < X ≤ 4} = P{X ≤ 4} − P{X ≤ 2} = F (4)− F (2) = 1
12

.

Below if a graph for F (x).
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