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1 Introduction

This paper covers all materials from both the lecture video and class recording
from Prof. Mike O’Neil’s October 28th lecture for Theory of Probability, with
some additional sources from the textbook.

2 Asynchronous Lecture

2.1 Uniform Random Variable

A uniform random variable is one that takes on values in an interval with equal
probability.
For instance, a random variable is said to be uniformly distributed over the
interval (0, 1) if its probability density function is given by

U ∼ uniform(0, 1)

f(x) =

{
1 if 0 < x < 1

0 otherwise
(1)

Assume real numbers a,b in interval (0,1) and a<b, then

P [U ∈ (a, b)] =

∫ b

a

f(x)dx (2)

=

∫ b

a

dx (3)

= b− a (4)
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Furthermore, the cumulative distribution function can be written as

F (x) = P [U ≤ x] (5)

=


0 x ≤ 0

x x ∈ (0, 1)

1 x ≥ 1

(6)

In general, the uniform density can be expanded to define on any interval (α, β)

f(x) =

{
1

β−α for u ∈ (α, β)

0 otherwise
(7)

Similarly, to compute the probability of sub-interval (a, b) where α < a < b < β
can be formulated as

P [U ∈ (a, b)] =

∫ b

a

1

β − α
dx (8)

=
b− a
β − α

(9)

(the outcome of this integral is not exceeding 1)
Since F (a) =

∫ a
−∞ f(x)dx that the distribution function of a uniform random

variable on the interval (α, β) is given by

F (a) =


0 a ≤ α
a−α
β−α α < a < β

1 a ≥ β
(10)

Returning to the previous instance that random variable is uniformly distributed
over the interval (0, 1), the expectation of uniform (weighted average) would be

E [u] =

∫ 1

0

udu (11)

=
1

2
u2
∣∣∣1
0

(12)

=
1

2
(13)

2



And for the variance, which classify the spread

V ar [u] =

∫ 1

0

(
u− 1

2

)2

du (14)

=
1

3

(
u− 1

2

)3 ∣∣∣1
0

(15)

=
1

12
(16)

2.2 Normal Distribution

We say that X is normally distributed, with parameters µ and σ2 if the density
of X is given by

f(x) =
1√
2πσ

e−(x−µ)
2/2σ2

−∞ < x <∞ (17)

This density function is a bell-shaped curve that is symmetric about µ. Here’s
a graph of normal density function with arbitrary µ and σ2

(The maximum value of this curve will exist when (x− µ)2 on the exponential
to be 0. As well as (x− µ)2 becomes non-zero, which means to be positive, the
curve starts to decay, and eventually form a bell curve.)
In the density function of a normal random variable, µ controls the center of
the distribution (since curve is symmetric about µ), and σ2 controls the spread
of distribution.

In order to prove that f(x) is indeed a probability density function, we need
to show that

1√
2πσ

∫ ∞
−∞

e−(x−µ)
2/2σ2

dx = 1 (18)

to make the substitution y = (x− µ)/σ, the above integral becomes
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1√
2π

∫ ∞
−∞

e−y
2/2dy (19)

Thus, what we need to do is showing that

∫ ∞
−∞

e−y
2/2dy =

√
2π (20)

Let I =
∫∞
−∞ e−y

2/2dy, we get

I2 =

∫ ∞
−∞

e−y
2/2dy

∫ ∞
−∞

e−x
2/2dx (21)

=

∫ ∞
−∞

∫ ∞
−∞

e−(y2+x2)/2dydx (22)

=

∫ ∞
0

∫ 2π

0

e−r
2/2rdθdr (23)

= 2π

∫ ∞
0

re−r
2/2dr (24)

= −2πe−r
2/2
∣∣∣∞
0

(25)

= 2π (26)

Therefore, I =
√

2π and the function f(x) is proved.

Here’s a sample of application.
Let S0 stands for the price of stock today and S1 stands for the price of stock
tomorrow S1 often modeled as

S1 = S0e
r (27)

where r is the rate of return, modeled as a normal random variable

S1

S0
= er (28)

lnS1

S0
∼ Normal(µ, σ2)

Some Important Properties of Normal Distribution:
If X ∼ Normal(µ, σ2, then Y = aX + b ∼ Normal(aµ, a2σ2)
In this case, when we look at the cumulative distribution function of Y, it
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can be found out

FY = P [Y ≤ y] (29)

= P [aX + b ≤ y] (30)

= P

[
x ≤ y − b

a

]
(31)

= FX

(
y − b
a

)
(32)

With the similar approach, we are able to get the density function for a
N(µa+ b, a2µ2) random variable

d

dy
P [Y ≤ y] = f (y) (33)

=
d

dy
FX

(
y − b
a

)
(34)

=
1

a
fX

(
y − b
a

)
(35)

=
1

a

1√
2πσ

e−(( y−b
a )−µ)

2
/2σ2

(36)

=
1√

2πaσ
e−(y−b−µa)

2/2σ2a2 (37)

Hence, we could write the standardized form of the cumulative distribution
function, which has no closed form solution

∫ x
−∞

1√
2πσ

e−(x−µ)
2/2σ2

dx

Since the linear transformation of normal distribution is still normal, we only
need to do the simplest computation that µ = 0 and σ2 = 1, which is named
Standard Normal Distribution.(Z ∼ N(0, 1))
Based on the parameters given, we can write the density function and cumula-
tive distribution function of Standard Normal Distribution as

f(z) =
1

2π
e−

z2

2 (38)

F (z) =

∫ z

−∞

1

2π
e−

t2

2 dt (39)

= Φ(z) (40)

The linear transformation of Standard Normal Distribution Y = aZ + b is also
a normal distribution, in which Y ∼ N(b, a2).
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In order to obtain the cumulative distribution function of this normal distribu-
tion after linearly transforming, the equations can be written as

F (y) = P [Y ≤ y] (41)

= P [aZ + b ≤ y] (42)

= P

[
Z ≤ y − b

a

]
(43)

= Φ

(
y − b
a

)
(44)

Hence, we already learn about the process that transforming from Standard
Normal Distribution into an arbitrary normal distribution. Vice versa, if given
a normal random variable X ∼ N(µ, σ2) then we are able to normalize it to a
Standard Normal random variable Z = X−µ

σ .

2.3 Binomial Approximation

Analogous to the Poisson approximation to binomial probabilities, which is a
good approximation when n is large and p is small with λ = np ∼ o(1), a normal
random variable is also an approach to approximate a binomial random variable
where n is large, through DeMoivre-Laplace Limit Theorem

Sn ∼ binomial(n, p)

to standardize the random variable Sn

lim
n→∞

P

[
a ≤ Sn − np√

np(1− p)
≤ b

]
= Φ(b)− Φ(a) (45)

=

∫ b

a

f(x)dx (46)

where f(x) in the result stands for the standard normal density function

3 Synchronous Notes

3.1 Uniform Random Variable Recap

The uniform random variable is one that takes values on an interval with
equal probability.

U ∼ uniform(α, β) if

P [U ∈ (a, b)] =
∫ b
a

1
(β−α)dx

where (α < a < b < β).
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The PDF (probability density function) is a constant: 1
(β−α)

PDF : f(u) =

{
1

(β−α) if x ∈ (a, b)

0 otherwise

Expected Value:
E[U ] = 1

2 (α+ β

Variance:

V ar[U ] = E[U2]− (E[U ])2

=

∫ β

α

u2
1

β − α
du− 1

4
(α+ β)2

=
1

3
u3

1

(β − α)

∣∣β
α
− 1

4
(α+ β)2

=
1

3(β − α)
(β3 − α3)− 1

4
(α+ β)2

Then, by factoring (β3 − α3) to (β − α)(β2 + αβ + α2), we see that the (β − α)
terms cancel:

V ar[U ] = 4(α2+αβ+β2)−3(α2+2αβ+β2)
12

Simplifying this expression yields:

V ar[U ] = (α−β)2
12

3.2 Normal Random Variable Recap

A Normal Random Variable has a PDF given by:

PDF : f(x) =
1√
2πσ

e−(x−µ)
2/2σ2

−∞ < x <∞

Expected Value:

E[X] = µ

Variance:

V ar[X] = σ2

where µ is the value at which f(x) is at a maximum and σ is the width of
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the PDF.
If X ∼ N(µ, σ2), then

Z = X−µ
σ ∼ N(0, 1)

The cumulative distribution function for Z is

P [Z ≤ z] =
∫ z
−∞

1√
2π
e

−x2

2 dx

= Φ(Z)

This tells us that

P [Z ∈ (a, b]] = P [Z ≤ b]− P [Z ≤ a]

= Φ(b)− Φ(a)

If we return to our random variable X ∼ N(µ, σ2), then

P [X ≤ x] = P [
X − µ
σ

− x− µ
σ

]

= P [Z ≤ x− µ
σ

]

= Φ(
x− µ
σ

)

3.3 Student Questions:

Student Question 1: Is E[X] = x such that P [X ≤ x] = 1
2 for Normal Ran-

dom Variables?

Answer: No. We know that the cumulative distribution function starts at
0 and increases to 1. This is generally only true if the PDF is symmetric about
the expected value.

Counterexample:

f(x) = 2x
F (x) =

∫ x
0

2tdt = x2

→ F (x) = 1
2

→ x = 1√
2

E[X] =
∫ 1

0
x ∗ 2xdx =

∫ 1

0
2x2dx = 2

3

If f is symmetric about µ, then f(x − µ) is symmetric about 0. Therefore,∫
xf(x− µ)dx = 0.
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The new expected values are:

→ E[X − µ] = 0
→ E[X] = µ

Student Question 2: Review normal approximation to the binomial distribu-
tion.
Answer: If Sn ∼ binomial(n, p), then

Sn − np√
np(1− p)

→ N(0, 1)

as n→∞

lim
n→∞

P [a <
Sn − np√
np(1− p)

≤ b] = Φ(b)− Φ(a)

= P [a < Z ≤ b]

where Z ∼ N(0,1).
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