# Math233 Note 

kn1600, yz4806

November 11th 2020

## 1 Lecture Video

### 1.1 Function of Random Variable

Recall:

$$
X=\operatorname{Normal}(\mu, \sigma)
$$

means that X has probability density function (PDF):

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Or:

$$
P[X \leq x]=\phi\left(\frac{x-\mu}{\sigma}\right)
$$

Q: What if Y is a function of random variable?
A: The only way we can find PDF is through the cumulative distribution function(CDF):

$$
\begin{gathered}
F_{Y}[y]=P[Y \leq y]=P[g(x) \leq y] \\
=>f_{Y}=F_{Y}^{\prime}
\end{gathered}
$$

## Example:

If X is a continous random variable with probability density $f_{X}$. Let $Y=X^{2}$. For $Y \geq 0$,

$$
\begin{gathered}
F_{Y}(y)=P[Y \leq y] \\
F_{Y}(y)=P\left[X^{2} \leq y\right] \\
F_{Y}(y)=P[-\sqrt{y} \leq X \leq \sqrt{y}] \\
F_{Y}(y)=F(\sqrt{y})-F(-\sqrt{y}) \\
\frac{d}{d y}\left(F_{Y}(y)=F(\sqrt{y})-F(-\sqrt{y})\right) \\
f_{Y}(y)=\frac{1}{2 \sqrt{y}}\left[f_{x}(\sqrt{(y)})+f_{X}(-\sqrt{y})\right]
\end{gathered}
$$

### 1.1.1 General Case

Consider a continuous random variable X with $\operatorname{PDF} f_{X}$ and g a monotonic differentiable function. (i.e, $g^{-} 1$ exists everywhere and $\frac{d}{d y} g^{-} 1$ also exists)

Let $\mathrm{Y}=\mathrm{g}(\mathrm{X})$. Then:

$$
\begin{aligned}
P[Y \leq y]= & P[g(X) \leq y]=P\left[X \leq g^{-} 1(y)\right] \\
& =\int_{-\infty}^{g^{-} 1(y)} f_{X}(x) d x
\end{aligned}
$$

Let $z=g(x)$

$$
\begin{gathered}
x=g^{-} 1(z), d x=\frac{d}{d z}\left(g^{-} 1(z)\right) d z \\
P[Y \leq y]=\int_{-\infty}^{y} f_{X}\left(g^{-} 1(x)\right) \frac{d}{d z}\left(g^{-} 1(z)\right) d z \\
f_{Y}(y)=f_{X}\left(g^{-} 1(y)\right) \frac{d}{d y}\left(g^{-} 1(y)\right)
\end{gathered}
$$

Conclusion If X has $\operatorname{PDF} f_{X}$ and $g$ strictly monotone and differentiable, then $Y=g(X)$ has PDF.

$$
f_{Y}(y)= \begin{cases}f_{X}\left(g^{-} 1(y)\right)\left|\frac{d}{d y} g^{-} 1(y)\right| & \text { if } y=g(x) \\ 0 & \text { otherwise }\end{cases}
$$

Recall $x=g^{-} 1(y)$ is such that $\mathrm{g}(\mathrm{x})=\mathrm{y}$

### 1.2 Joint Distribution Function

The Join CDF for two random variables $\mathrm{X}, \mathrm{Y}$ is function F such that:

$$
F(x, y)=P[X \leq x, Y \leq y]
$$

### 1.2.1 Discrete Case

Join Probability Mass Function:

$$
\begin{gathered}
p\left(x_{i}, y_{j}\right)=P\left[X=x_{i}, Y=y_{j}\right] \\
=P\left[\cup_{j}\left(X=x_{i}, Y=y_{j}\right)\right] \\
=\sum_{j} p\left(x_{i}, y_{j}\right)
\end{gathered}
$$

### 1.3 Continous Case

$$
\begin{gathered}
P[X, Y \in C]=\iint_{C} f(x, y) d x d y \\
P[X \in(a, b), Y \in(c, d)]=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \\
F(x, y)=P[X \leq x, Y \leq y] \\
=\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) d u d v
\end{gathered}
$$

We know:

$$
\frac{d^{2} F}{d x d y}=f
$$

Lastly

$$
\begin{aligned}
& f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y \\
& f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x
\end{aligned}
$$

Since we are only integrating over $R^{2}$, this also holds for n random variables $X_{1}, X_{2}, \ldots X_{n}$

## 2 Class Lecture And Examples

## Recall Fundamental Theorem of Calculus:

$$
\begin{aligned}
F(y) & =\int_{a}^{h(y)} f(x) d x \\
F^{\prime}(y) & =f(h(y)) * h^{\prime}(y)
\end{aligned}
$$

Then, we can find PDF of $\mathrm{Y}=\mathrm{g}(\mathrm{X})$ with X being a continuous random variable

$$
f_{Y}(y)= \begin{cases}f_{X}\left(g^{-} 1(y)\right)\left|\frac{d}{d y} g^{-} 1(y)\right| & \text { if } y=g(x) \\ 0 & \text { otherwise }\end{cases}
$$

## Example 1:

Let $\mathrm{X}=$ Uniform $(-1,1)$. Then:

$$
f(x)= \begin{cases}1 / 2 & \text { on }(-1,1) \\ 0 & \text { otherwise }\end{cases}
$$

Let $\mathrm{Y}=X^{2}$. We have:

$$
\left.P[Y \leq y]=P\left[X^{2} \leq y\right]=P[-\sqrt{y} \leq X \leq \sqrt{( } y)\right]
$$

$$
\begin{gathered}
=\int_{-\sqrt{y}}^{\sqrt{y}} f_{x}(x) d x \\
=\int_{-\sqrt{y})}^{\sqrt{y}} \frac{1}{2} d x=\sqrt{y} \\
f_{Y}(y)=\frac{d}{d y} \sqrt{y}=\frac{1}{2 \sqrt{y}}
\end{gathered}
$$

## Example 2:

Let $\mathrm{X}=\operatorname{Normal}(0,1), \mathrm{Y}=\cos (X)$.
$\mathrm{X} \in(-\infty, \infty), \mathrm{Y} \in[-1,1]$

$$
\begin{gathered}
P[Y \leq y]=P[\cos (X) \leq y] \\
\quad \neq P[X \leq \arccos (y)] \\
\quad \neq \int_{-\infty}^{\arccos (y)} f(x) d x
\end{gathered}
$$

This is the wrong domain. Since $\mathrm{Y}=\cos (X)$ is an oscillating functions, we must identify the interval on which we can integrate over. We know X is a Normal Random Variable on $(0,1)$. Hence, we can find the interval by finding the intersection of $\mathrm{f}(\mathrm{x})=\cos (\mathrm{y})$. We can then find the right region to integrate over. So:

$$
P[Y \leq y]=P[\cos (X) \leq y]=\int_{\cos (x) \leq y} f(x) d x
$$

## Problem 5.22 (Self Test):

Let $\mathrm{U}=\operatorname{Uniform}(0,1)$, a and b are constants. $\mathrm{a}<\mathrm{b}$
a, Show that if $b \geq 0$ then $b U$ is uniformly distributed on $(0, b)$ and if $b<0$, then bU is uniformly distributed on $(\mathrm{b}, 0)$
b , Show that $\mathrm{a}+\mathrm{U}$ is uniformly distributed on $(\mathrm{a}, 1+\mathrm{a})$
c, What function of $U$ is uniformly distributed on (a,b)
d, Show that $\min (U, 1-U)$ is a uniform $(0,1 / 2)$ random variable e, Show that $\max (\mathrm{U}, 1-\mathrm{U})$ is a uniform $(1.2,1)$ random variable

## Solution:

a, Consider $b>0$ :

$$
\begin{gathered}
F(b U)=f(b U \leq x) \\
=f\left(U \leq \frac{x}{b}\right) \\
=\int_{0}^{x / b} d x
\end{gathered}
$$

$$
\begin{gathered}
=F\left(\frac{x}{b}\right) \\
=\frac{x}{b} \\
=f_{b} u(x)=F^{\prime}\left(\frac{x}{b}\right)=\frac{1}{b}
\end{gathered}
$$

The case $\mathrm{b}<0$ is left as exercise. b and c are also similar. d , Let $\mathrm{Y}=\min (\mathrm{U}$, 1-U)

$$
\begin{aligned}
& F(Y)=P[\min (U, 1-U) \leq x] \\
& =P[U \leq x] \cup P[1-U \leq x]
\end{aligned}
$$

Since $U \cap(1-U)=\emptyset$. We have:

$$
\begin{gathered}
=\left(\int_{0}^{x} d x\right)+(1-P[U<1-x]) \\
x=+(1-(1-x)) \\
=2 x \\
=>f_{u}(x)=F^{\prime}(y)=2
\end{gathered}
$$

Which is the density function for $\mathrm{U}=\operatorname{Uniform}(0,1 / 2)$.e) is similar and left as an exercise.

