Student Note for 11.09 Lecture

Athena Xu and Joseph Elliot Strizhak

November 2020

1 Lecture Notes

1.1 Independent Random Variables:

X, Y are independent random variables if for any two sets of real numbers A, B,

$$
P\{X \epsilon A, Y \epsilon B\}=P\{X \epsilon A\} \cdot P\{Y \epsilon B\}
$$

The joint CDF is equal to

The joint probability density, $\mathrm{f}(\mathrm{x}, \mathrm{y})$, is equal to

$$
F(a, b)=F_{X}(a) F_{Y}(b)
$$

If the two random variables are not independent and don't satisfy the above criteria, then we say that they are dependent
Here is an example: $f(x, y)=6 e^{-2 x} \cdot e^{-3 y}, x, y \geq 0$
$f(x, y)=f_{x} \cdot f_{y}=2 e^{-2 x} \cdot 3 e^{-3 x}$, where x and y are independent because we were able to split them up into two different functions.
Here is another function, albeit dependent. $f(x, y)=24 x y, x \epsilon(0,1), y \epsilon(0,1), x+y \leq 1$ The function is 0 otherwise. This function will lie in the region bounded between the x and y axes and $\mathrm{x}+\mathrm{y}=1$. This function can't be split into separate functions of x and y because the domain of dependence can't be split into functions of x and y . The reason for this is because the indicator function of $f(x, y)$ is a function of $x+y$, not $x y$.

1.2 Sums of Independent Random Variables:

If X and Y are independent, let $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$. We need to calculate the PDF and CDF of Y . Its CDF is $F_{Z}(z)=P\{Z \leq z\}=P\{X+Y \leq z\}=\iint_{D} f(x, y) d x d y$ where D: $x+y \leq z$ Since X and Y are independent, we can factor. Our last equation is equal to $\iint_{D} f_{x}(x) f_{y}(y) d x d y$ Our domain consists of all the points to the "left" of the line $\mathrm{x}+\mathrm{y}=\mathrm{z}$. So our equation can be rewritten as $\int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f_{X}(x) f_{Y}(y) d x d y=\int_{-\infty}^{\infty} F_{X}(z-y) f_{Y}(y) d y$
$f_{Z}(z)=\frac{d}{d z} F_{Z}(z)=\frac{d}{d z} \int_{-\infty}^{\infty} F_{X}(z-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) d y$ This is known as the convolution of f_{X} with f_{Y} This can be thought of as taking f_{X} and f_{Y} and shifting them over by z , multiplying and integrating them, and summing all of the integrals up.

Another important concept are the Independent Identically Distributed (IID) Random Variables. Consider two IID U(0,1)RVs X,Y. Z=X $+\mathrm{Y} f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) d y=$ $\int_{0}^{1} f_{X}(z-y) d y$ Since X and Y have a range from 0 to $1, \mathrm{Z}$ goes from 0 to 2 . We have two cases, one in which Z is between 0 and 1 , and the other where Z is between 1 and 2 .
If $z \in(0,1), f_{X}(z-y)$ is non-zero when $\int_{0}^{z} 1 d y=z$
If $z \in(1,2), f_{X}(z-y)$ is non-zero when $\int_{z-1}^{1} 1 d y=2-z$
So, $f_{Z}(z)=z$ when $z \in(0,1), 2-z$ when $z \in(1,2)$, and is 0 otherwise. When you add two uniform random variables, the density of the sum is a triangle function. We can similarly define the convolution $\mathrm{Z}=\mathrm{W}+\mathrm{X}+\mathrm{Y}$. It would be the convolution of the PDF of W and $f_{Z}(z)$

Propositions for Continuous RVs:
Proposition 1: If $X \sim \Gamma(s, \lambda)$ and $Y \sim \Gamma(t, \lambda)$, then $Z=X+Y \sim \Gamma(s+t, \lambda)$
Proposition 2: If $x_{1} \sim N\left(\mu_{1}, \sigma_{1}{ }^{2}\right) \ldots x_{n} \sim N\left(\mu_{n}, \sigma_{n}{ }^{2}\right)$ then $Y=\sum_{i=1}^{n} X_{i} \sim N\left(\sum_{j} \mu_{j}, \sum_{j} \sigma_{j}{ }^{2}\right)$
Propositions for Discrete RVs:
Let X take values $0,1,2, \ldots$ and let Y take values $0,1,2 \ldots$ Then $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$ takes values $0,1,2, \ldots$
$\mathrm{P}[\mathrm{Z}=\mathrm{n}]=\sum_{k=0}^{n} P[X=k, Y=n-k]=\sum_{k=0}^{n} P[X=k] P[Y=n-k]$ This is a discrete convolution.
Example: $X \sim \operatorname{Poisson}\left(\lambda_{1}\right), Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$
$\mathrm{P}[\mathrm{X}+\mathrm{Y}=\mathrm{n}]=\sum_{k=0}^{n} \frac{\lambda_{1}{ }^{k} e^{-\lambda_{1}} k!}{k!} \cdot \frac{\lambda_{2}{ }^{k} e^{-\lambda_{2}}}{n-k)!}=\ldots=e^{-\left(\lambda_{1}+\lambda_{2}\right) \sum_{k=0}^{n}\binom{n}{k} \lambda_{1}{ }^{k} \lambda_{2}^{n-k}=e^{-\left(\lambda_{1}+\lambda_{2}\right)}\left(\lambda_{1}+\lambda_{2}\right)^{n}}$
That is the probability mass function of Poisson ($\lambda_{1}+\lambda_{2}$)
$\mathrm{X}+\mathrm{Y} \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$

2 In-class Examples

2.1 Joint Continuous Distribution:

$$
P[(X, Y) \in A]=\iint_{A} f(x, y) d x d y
$$

$f(x, y)$ is the joint probability density function

The distribution function is defined similarly: $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{P}[\mathrm{X} \leq \mathrm{x}, \mathrm{Y} \leq \mathrm{y}]=\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) d u d v$

$\rightarrow f(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y} \quad f_{x}(x)=\int_{-\infty}^{\infty} f(x, y) d y \quad f_{y}(x)=\int_{-\infty}^{\infty} f(x, y) d x$

2.2 Independence of Random Variables:

Recall: Events A, B were independent if $P[A \mid B]=\mathrm{P}[\mathrm{A}] \Leftrightarrow P[A B]=P[A] P[B]$
Two random variables X, Y are independent if

$$
P[X \in A, Y \in B]=P[X \in A] P[Y \in B]=\int_{A} \int_{B} f(x, y) d y d x=\int_{A}\left(\int_{B} f(x, y) d y\right) d x
$$

If X, Y are independent:

- $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{f}_{x}(x) f_{y}(y)$
- $\mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{F}_{x}(x) f_{y}(y)$
2.3 Sums of Independent Random Variables

Let X, Y be independent random variables $\Longrightarrow f(x, y)=f_{x}(x) f_{y}(y)$. Consider $Z=X+Y$. What is $F_{Z}=P[Z \leq z]$?

$$
P[Z \leq z]=P[X+Y \leq z] \Longrightarrow \iint_{x+y \leq z} f(x, y) d x d y=\int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f(x, y) d x d y=\int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f_{x}(x) f_{y}(y) d x d y
$$

$$
P[Z \leq z]=\int_{-\infty}^{\infty} F_{x}(z-y) f_{y}(y) d y=F_{z}(z)
$$

We know that $\mathrm{f}_{z}(z)=\frac{d}{d z} F_{z}(z)=\frac{d}{d z} \int_{-\infty}^{\infty} F_{x}(z-y) f_{y}(y) d y=\int_{-\infty}^{\infty} f_{x}(z-y) f_{y}(y) d y \leftarrow$ convolution of f_{x} and f_{y}
If instead we wanted the density for $\mathrm{V}=\mathrm{W}+\mathrm{X}+\mathrm{Y} \rightarrow P[V \leq u]=P[W+Z \leq u]=\int F_{w}(u-z) f_{z}(z) d z \rightarrow f_{u}=\int f_{w}(u-z) f_{z}(z) d z=\int_{-\infty}^{\infty} f_{w}(u-z) \int_{-\infty}^{\infty} f_{x}(z-y) f_{y}(y) d y d z \leftarrow$ iterated convolution

Examples:

$$
\operatorname{Gamma}(s, \lambda)+\operatorname{Gamma}(t, \lambda) \sim \operatorname{Gamma}(s+t, \lambda)
$$

$$
N\left(\mu_{1}, \sigma_{1}^{2}\right)+N\left(\mu_{2}, \sigma_{2}^{2}\right) \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Cauchy : $f(x)=\frac{1}{\pi} * \frac{1}{1+x^{2}} g(x)=f(x-\theta)=\frac{1}{\pi} * \frac{1}{1+(x-\theta)^{2}} ; h(x)=f\left(\frac{x-\theta}{\tau}\right)=\frac{1}{\pi} * \frac{1}{1+\frac{(x-\theta)^{2}}{\tau^{2}}}=\frac{\tau^{2}}{\pi} * \frac{1}{\tau^{2}+(x-\theta)^{2}}$

