Student Notes Nov 16

swp293, sm8107
November 16, 2020

1 Lecture Video

1.1 Conditional Distribution: Discrete Case

Conditional Distributions
Goal: Given X,Y random variables with joint $\operatorname{pdf} \mathrm{f}(\mathrm{x}, \mathrm{y})$ and marginal pdfs: f_{x}, f_{y}, what is the pdf of the random variables :

$$
z=X \mid Y=y
$$

Recall for events:

$$
P[E \mid F]=P[E F] / P[F]
$$

Define the conditional probability mass function so that:

$$
P_{X \mid Y}(x \mid y)=P[X=x \mid Y=y]=\frac{P[X=x, Y=y]}{P[Y=y]}=\frac{p(x, y)}{P_{Y}(y)}
$$

$p(x, y)$: joint mass function
$P_{Y}(y)$: marginal mass function (Assuming $P_{Y}(y)>0$)
Conditional distribution function is then:

$$
F_{X \mid Y}(x \mid y)=P[X \leq x \mid Y \leq y]=\sum_{a \leq x} P[X=a \mid Y=y]
$$

Pictorially, imagine there is a grid of probabilities:

Fix $Y=y_{3}$, scale this row by $\frac{1}{P_{Y}\left(y_{3}\right)}$ so that $\sum P_{X \mid Y}\left(x_{i} \mid y_{3}\right)$
If X and Y are independent random variables, then:

$$
\begin{array}{r}
p(x, y)=P_{X}(x) P_{Y}(y) \\
\rightarrow P_{X \mid Y}(x \mid y)=\frac{P(x, y)}{P_{Y}(y)}=\frac{P_{X}(x) P_{Y}(y)}{P_{Y}(y)}=P_{X}(x)
\end{array}
$$

1.2 Conditional Distribution: Continuous Case

If X and Y have a joint probability density function $f(x, y)$, then the conditional probability density function of X given that $\mathrm{Y}=\mathrm{y}$ is defined, for all values of y such that $f_{Y}(y)>0$,by:

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

To motivate this definition, multiply the left-hand side by dx and the righthand side by (dx dy)/dy to obtain

$$
\begin{gathered}
f_{X \mid Y}(x \mid y)=\frac{f(x, y) d x d y}{f_{Y}(y) d y} \\
\cong \frac{P\{x<=X<=x+d x, y<=Y<=y+d y\}}{P\{y<=Y<=y+d y\}} \\
=P\{x<=X<=x+d x, y<=Y<=y+d y\}
\end{gathered}
$$

The use of conditional densities allows us to define conditional probabilities of events associated with one random variable when we are given the value of
a second random variable. That is, if X and Y are jointly continuous, then, for any set A,

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y) d x d y}{f_{Y}(y) d y}
$$

The use of conditional densities allows us to define conditional probabilities of events associated with one random variable when we are given the value of a second random variable. That is, if X and Y are jointly continuous, then, for any set A,

$$
P(X \in A \mid Y=y)=\int_{A} f_{X \mid Y}(x \mid y) d x
$$

Likewise,

$$
P(X \in A \mid Y \in B)=\int_{A} \int_{B} f_{X \mid Y}(x \mid y) d x d y
$$

For A in range $(-\infty, x)$, thedistributionfunctionis :

$$
\begin{gathered}
f_{X \mid Y}(x \mid y)=P[X<=x \mid Y=y] \\
=\int_{-\infty}^{x} f_{X \mid Y}(u \mid y) d u
\end{gathered}
$$

If X and Y are independent, then:

$$
f_{X \mid Y}(x \mid y)=f_{X}(x)
$$

2 In Class Examples

2.1 Discrete Conditional Distribution

$f(x, y)= \begin{cases}\frac{e^{\frac{-x}{y}} e^{-y}}{y}, & \text { if } x, y>1 \\ 0, & \text { otherwise }\end{cases}$

What is $P[X>1 \mid Y=y]$?

$$
f_{X \mid Y}(x \mid y)=\frac{f(x y)}{f_{Y}(y)}
$$

$$
\begin{align*}
& f_{Y}(y)=\int_{0}^{\infty} f(x, y) d x=\int_{0}^{\infty} \frac{e^{\frac{-x}{y}} e^{-y}}{y} d x \\
&= \frac{e^{-y}}{y} \int_{0}^{\infty} e^{\frac{-x}{y}} d x \\
&=\left(\frac{e^{-y}}{y}\right)-\left.y e^{\frac{x}{y}}\right|_{0} ^{\infty} \tag{1}\\
&= \frac{e^{-y}}{y}\left(0+y e^{0}\right. \\
&= e^{-y} \\
& f_{X \mid Y}(x \mid y)=\frac{f(x y)}{f_{Y}(y)} \\
&=\frac{e^{\frac{-x}{y}} e^{-y} / y}{e^{-y}} \tag{2}\\
&=\frac{e^{\frac{-x}{y}}}{y}
\end{align*}
$$

Then,

$$
\begin{align*}
P[X>1 \mid Y=y] & =\int_{1}^{\infty} f_{X \mid Y}(x \mid y) d x=\int_{1}^{\infty} \frac{e^{\frac{-x}{y}}}{y} d x \\
& =\left(\frac{1}{y}\right)-\left.y e^{\frac{-x}{y}}\right|_{1} ^{\infty} \tag{3}\\
& =\left(\frac{1}{y}\right)\left(0+y e^{\frac{-1}{y}}\right) \\
& =e^{\frac{-1}{y}}
\end{align*}
$$

Example 4B (pg. 264):
If X and Y are independent Poisson variables with respective parameters λ_{1} and λ_{2}, calculate the conditional distribution of X given that $\mathrm{X}+\mathrm{Y}=\mathrm{n}$.

We calculate the conditional probability mass function of X given that $\mathrm{X}+\mathrm{Y}=\mathrm{n}$ as follows:
$P X=k \left\lvert\, X+Y=n=\frac{P[X=k, X+Y=k]}{P[X+Y=n]}=\frac{P[X=k, Y=n-k]}{P[X+Y=n]}=\frac{P[X=k] P[Y=n-k]}{P[X+Y=n]}\right.$

The last equality follows from the assumed independence of X and Y . Recalling that $\mathrm{X}+\mathrm{Y}$ has a Poisson distribution with parameter $\lambda_{1}+\lambda_{2}$, we see that it equals:

$$
\begin{align*}
P[X=k \mid X+Y=n] & =\left(\frac{e^{\lambda_{1}} \lambda_{1}^{k}}{k!}\right)\left(\frac{e^{-\lambda_{2}} \lambda_{2}^{n-k}}{(n-k)!}\right)\left[\frac{e^{-\left(\lambda_{1}+\lambda_{2}\right)}\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n!}\right]^{-1} \\
& =\left(\frac{n!}{(n-k)!k!}\right)\left(\frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{\left(\lambda_{1}+\lambda_{2}\right)^{n}}\right) \tag{4}\\
& =\binom{n}{k}\left(\frac{\lambda_{1}}{\lambda_{l}+\lambda_{2}}\right)^{k}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-k}
\end{align*}
$$

The conditional distribution of X given that $\mathrm{X}+\mathrm{Y}=\mathrm{n}$ is the binomial distribution with parameters n and $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$.

2.2 Continuous Conditional Distribution

5a (page 266):
The joint density of X and Y is given by:

$$
f(x, y)=\left\{\begin{array}{l}
12 x(2-x-y), 0<x<1,0<y<1 \tag{5}\\
0, \text { otherwise }
\end{array}\right.
$$

Question: Compute the conditional density of X given that $\mathrm{Y}=\mathrm{y}$, given that $0<y<1$.

Solution: For $0<x<1,0<y<1$, we have:

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)} \\
& =\frac{f(x, y)}{\int_{-\infty}^{+\infty} f(x, y) d x} \\
& =\frac{x(2-x-y)}{\int_{0}^{1} x(2-x-y) d x} \\
& \quad=\frac{x(2-x-y)}{2 / 3-y / 2} \\
& \quad=\frac{6 x(2-x-y)}{4-3 y}
\end{aligned}
$$

5b (page 267): Suppose that the joint density of X and Y is given by:

$$
f(x, y)=\left\{\begin{array}{l}
\frac{e^{-x / y} e^{-y}}{y}, 0<x<\infty, 0<y<\infty \tag{6}\\
0, \text { otherwise }
\end{array}\right.
$$

Find $P[X>1 \mid Y=y]$.
Solution:

$$
\begin{gathered}
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)} \\
=\frac{e^{-x / y} e^{-y} / y}{e^{-y} \int_{0}^{\infty}(1 / y) e^{-x / y} d x} \\
=\frac{e^{-x / y}}{y}
\end{gathered}
$$

Hence,

$$
\begin{aligned}
P(X>1 \mid Y= & y)=\int_{1}^{\infty} e^{-x / y} / y d x \\
& =e^{-1 / y}
\end{aligned}
$$

When X and Y are independent,

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)}=f_{X}(x)
$$

Suppose that X is a continuous random variable having probability density function f and N is a discrete random variable, and consider the conditional distribution of X given that $\mathrm{N}=\mathrm{n}$. Then:

$$
\frac{P(x<X<x+d x \mid N=n)}{d x}=\frac{P(N=n \mid x<X<x+d x) P(x<X<x+d x)}{P(N=n) d x}
$$

Letting dx approach 0, then:

$$
\lim _{d x \rightarrow 0} \frac{P(x<X<x+d x \mid N=n)}{d x}=\frac{P(N=n \mid X=x) f(x)}{N=n}
$$

Therefore,

$$
f_{X \mid N}(x \mid n)=\frac{P(N=n \mid X=x) f(x)}{N=n}
$$

