Theory of Probability Lecture Notes: 6.6-6.7

Matthew Zhang, Nikhil Isac, Charles Yan

November 18th

Lecture Video Notes

Order Statistics

Let X_{1}, \ldots, X_{n} be independent and identically distributed continuous random variables.

Let $X_{(1)}=$ smallest X_{1}, \ldots, X_{n}
$X_{(2)}=$ the next smallest X_{1}, \ldots, X_{n}
$\ddot{X}_{(n)}=$ the largest X_{1}, \ldots, X_{n}
$\Longrightarrow X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ which is the order statistics of X_{1}, \ldots, X_{n}.
What is the probability distribution function?
$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ take on the values $X_{1} \leq X_{2} \leq \ldots \leq X_{n}$ if and only if: $X_{1}=X_{i_{1}}$
$X_{2}=X_{i_{2}}$
$X_{n}=X_{i_{n}}$ for some permutation $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $(1,2, \ldots, n)$.
So in the terms of X_{1}, \ldots, X_{n} :
$P\left[x_{i_{1}}-\frac{\epsilon}{2} \leq X_{1} \leq x_{i_{1}}+\frac{\epsilon}{2}, \ldots, x_{i_{n}}-\frac{\epsilon}{2} \leq X_{n} \leq x_{i_{n}}+\frac{\epsilon}{2}\right]$
$=\epsilon^{n} f_{x_{1} x_{2} \ldots x_{n}}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$
$=\epsilon^{n} f_{x_{1}}\left(x_{i_{1}}\right) \ldots f_{x_{n}}\left(x_{i_{n}}\right)$
Now since there are n ! permutations of $(1,2, \ldots, n)$ we have that:
$P\left[x_{i_{1}}-\frac{\epsilon}{2} \leq X_{1} \leq x_{i_{1}}+\frac{\epsilon}{2}, \ldots, x_{i_{n}}-\frac{\epsilon}{2} \leq X_{n} \leq x_{i_{n}}+\frac{\epsilon}{2}\right] \approx n!\epsilon^{n} f\left(x_{1}\right) \ldots f\left(x_{n}\right) \Longrightarrow$ $f_{x_{(1)} \ldots x_{(n)}}\left(X_{1}, \ldots, X_{n}\right)=n!f\left(x_{1}\right) \ldots f\left(x_{n}\right)$ for $x_{1} \leq x_{2} \leq x_{3} \ldots \leq x_{n}$ since it does not matter which $x_{i}=x_{1}$ etc.

Joint Distributions of Functions of Several Random Variables

Goal: Given joint probability distribution function $f=f\left(x_{1}, x_{2}\right)$ for X_{1}, X_{2}, and if $Y_{1}=g_{1}\left(X_{1}, X_{2}\right), Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$ what is the probability distribution function of Y_{1}, Y_{2} ?

We need two assumptions:

1. The mapping $\binom{x_{1}}{x_{2}} \longrightarrow\binom{g_{1}\left(x_{1}, x_{2}\right)}{g_{2}\left(x_{1}, x_{2}\right)}=\binom{y_{1}}{y_{2}}$ is uniquely invertible, with $x_{1}=$ $h_{1}\left(y_{1}, y_{2}\right), x_{2}=h_{2}\left(y_{1}, y_{2}\right)$
2. g_{1}, g_{2} are continuously differential, and that:
$J\left(x_{1}, x_{2}\right)=\left|\begin{array}{ll}\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} \\ \frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}}\end{array}\right|=\frac{\partial g_{1}}{\partial x_{1}} \frac{\partial g_{2}}{\partial x_{2}}-\frac{\partial g_{1}}{\partial x_{2}} \frac{\partial g_{2}}{\partial x_{1}} \neq 0$.
Under these two assumptions we have that $f_{x_{1}, x_{2}}\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right) \frac{1}{\left|J\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right)\right|}$
The idea is: $P\left[Y_{1} \leq y_{1}, Y_{2} \leq y_{2}\right]=P\left[g_{1}\left(x_{1}, x_{2}\right) \leq y_{1}, g_{2}\left(x_{1}, x_{2}\right) \leq y_{2}\right]=$ $\iint_{g_{1}\left(x_{1}, x_{2}\right) \leq y_{1}, g_{2}\left(x_{1}, x_{2}\right) \leq y_{2}} f_{x_{1} x_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$

Make the following change of variables: $x_{1}=h_{1}\left(y_{1}, y_{2}\right), x_{2}=h_{2}\left(y_{1}, y_{2}\right) \Longrightarrow$ $f \longrightarrow f\left(h_{1}, h_{2}\right)$
$d x_{1} d x_{2}=\left|\begin{array}{ll}h_{1,1} & h_{1,2} \\ h_{2,1} & h_{2,2}\end{array}\right| d y_{1} d y_{2}$

If we insert back into the integral we obtain that the integrand is:
$f_{x_{1} x_{2}}\left(h_{1}, h_{2}\right) \frac{1}{J\left(h_{1}, h_{2}\right)}=f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$.

Zoom notes

Order Statistics

Let X_{1}, \ldots, X_{n} (has density $\mathrm{f}(\mathrm{x})$) be independent and identically distributed continuous random variables.

Let $X_{1}, X_{2}, X_{3} \ldots$
$\Leftrightarrow \mathrm{X}_{1} \leq \mathrm{X}_{2} \leq \mathrm{X}_{3} \leq \ldots$
$\mathrm{X}_{1}=\min \left(X_{1}, \ldots, X_{n}\right)$
$X_{2}=$ next smallest
$\Rightarrow \mathrm{f}_{X_{1}, X_{2}, \ldots, X_{n}}\left(x_{1}, . . x_{n}\right)=\mathrm{n}!\mathrm{f}\left(x_{1}\right) \mathrm{f}\left(x_{2}\right) \ldots \mathrm{f}\left(x_{n}\right)$ on the set $x_{1}<x_{2}<x_{3} \ldots<x_{n}$
Example:
$\overline{X_{1}, X_{2}, X_{3}} \sim U(0,1)$
$\mathrm{x}_{1}<x_{2}<x_{3}$ be the order statistics
$\mathrm{f}(\mathrm{x})=1$ on $\mathrm{x} \in(0,1)$
$\Rightarrow \mathrm{f}_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)=3$! on the set $0<x_{1}<x_{2}<x_{3}<1$.
Check that this is indeed a probability density.
$\iiint_{0<x_{1}<x_{2}<x_{3}<1} 3!d \mathrm{x}_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}=\int_{0}^{1} \int_{0}^{x_{3}} \int_{0}^{x_{2}} 3!\mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3}$
$=\left.\int_{0}^{1} \int_{0}^{x_{3}} 6 x_{1}\right|_{0} ^{x_{2}} \mathrm{~d} x_{2} \mathrm{~d} x_{3}$
$=\int_{0}^{1} \int_{0}^{x_{3}} 6 x_{2} \mathrm{~d} x_{2} \mathrm{~d} x_{3}$
$=\left.\int_{0}^{1} 3 x_{2}^{2}\right|_{0} ^{x_{3}} \mathrm{~d} x_{3}$
$=\int_{0}^{1} 3 x_{3}^{2} \mathrm{~d} x_{3}$
$=\left.x_{3}^{3}\right|_{0} ^{1}=1$

Ex: $\mathrm{E}\left[X_{1}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{x_{n}} \ldots \int_{-\infty}^{x_{2}} x_{1} \mathrm{n}!\mathrm{f}\left(x_{1}\right) \ldots \mathrm{f}\left(x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}$

Functions of Several Random Variables

Change of Variables in multiple integrals: $\iint f(x, y) d x d y$ change to polar coordinates :

```
\(x=\mathrm{rcos} \theta\)
\(\mathrm{y}=r \sin \theta\)
\(\mathrm{dxdy}=J d r d \theta\)
\(=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right| d r d \theta\)
\(\mathrm{dxdy}=\left(\frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta}-\frac{\partial x}{\partial \theta} \frac{\partial y}{\partial r}\right) d r d \theta\)
\(=(\cos \theta r \cos \theta+r \sin \theta \sin \theta) d r d \theta\)
\(=\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right) d r d \theta=\mathrm{r} d r d \theta \iint f(x, y) d x d y=\iint f(\mathrm{r} \cos \theta, r \sin \theta) \mathrm{r} d r d \theta\)
```

If X_{1}, X_{2} are continuous random variables with joint probability distribution
function $f\left(x_{1}, x_{2}\right)$, and if:
|the mapping (have to be continuously differentiable and uniquely invertible)
$Y_{1}=g_{1}\left(x_{1}, x_{2}\right) \mid x_{1} \rightarrow g_{1}\left(x_{1}, x_{2}\right)=Y_{1}$
$Y_{1}=g_{2}\left(x_{1}, x_{2}\right) \mid x_{2} \rightarrow g_{2}\left(x_{1}, x_{2}\right)=Y_{2}$
Then what is the joint probability distribution function of Y_{1}, Y_{2} ?
Start with the distribution function:
$P\left[Y_{1} \leq y_{1}, Y_{2} \leq y_{2}\right]=P\left[g_{1}\left(X_{1}, X_{2}\right) \leq y_{1}, g_{2}\left(X_{1}, X_{2}\right) \leq Y_{2}\right]$
$=\iint \mathrm{f}\left(\mathrm{x}_{1}, x_{2}\right) d x_{1} d x_{2}$

Change variables:
$u=g_{1}\left(x_{1}, x_{2}\right)$
$v=g_{2}\left(x_{1}, x_{2}\right)$
Defines "some" region of integration:
$g_{1}\left(x_{1}, x_{2}\right) \leq y_{1} \Rightarrow u \leq y_{1}$
$g_{1} 2\left(x_{1}, x_{2}\right) \leq y_{2} \Rightarrow v \leq y_{2}$
dudv $==\left|\begin{array}{ll}\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} \\ \frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}}\end{array}\right| d x_{1} d x_{2} \quad($ matrix $=\mathrm{J})$
$x_{1}=h_{1}(u, v)$
$x_{2}=h_{2}(u, v)$
$\Rightarrow d x_{1} d x_{2}=\frac{1}{J} d u d v$
$\Rightarrow \int_{-\infty}^{y_{2}} \int_{-\infty}^{y_{1}} f\left[h_{1}(u, v), h_{2}(u, v)\right] \frac{1}{J} d u d v=F_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)$
$\Rightarrow f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\frac{\partial^{2} F_{Y_{1}, Y_{2}}}{\partial y_{1} \partial y_{2}}$
$=f\left[h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right] \frac{1}{J}$

extra exercises

1. theoretical excerxise 6.32 let $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ be the ordered values of n independent uniform $(0,1)$ random varaibles. prove that for $1 \leq k \leq n+1$,

$$
P\left\{X_{(k)}-X_{(k-1)}>t\right\}=(1-t)^{n}
$$

where $X_{(0)} \equiv 0, X_{(n+1)} \equiv 1$, and $0<t<1$
since the random variables are uniform distribution, meaning that $f(x)=$ $\frac{1}{b-a}=\frac{1}{1-0}=\frac{1}{1}=1$ $F(y)=\int_{0}^{t} f(x) d x=\int_{0}^{y} 1 d x=y$ for $X_{(k)}-X_{(k-1)}>t$ it means that $X_{(k)}>t$ which should also be true for $i>k$ and $X_{(k-1)} \leq 1-t$ which should also be true for $i<k-1$, other wise it's impossible.
$P\left(X_{(k)}-X_{(k-1)}>t\right)=P\left(x_{(1)} \leq 1-t, \ldots, X_{(k-1)} \leq 1-t\right), X_{(k)}>$ $\left.t, \ldots x_{(n)}>t\right)$
$=P(X \leq 1-t)^{k-1} P(X>t)^{n-(k-1)}$
$=(1-t)^{k-1}(1-t)^{n-(k-1)}$
$=(1-t)^{n-(k-1)+(k-1)}$
$=(1-t)^{n}$
2. theoretical excercise 6.36 if X and Y are independent standard normal random variable, determine the joint density of function of

$$
U=X \quad V=\frac{X}{Y}
$$

then use your result to show that $\frac{X}{Y}$ has a Cauchy distribution
for normal vairable we have $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$ since X and Y are standard normal variable, meaning that $\mu=0, \sigma=1$
sub that in we get
$f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$
$f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}$
since we know X and Y are independent we get the joint probability density function:
$f_{X, Y}(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}$
$=\frac{1}{2 \pi} e^{-x^{2} / 2} e^{-y^{2} / 2}$
from $\mathrm{U}=\mathrm{X}$ and $\mathrm{V}=\frac{X}{Y}$ we can get $x=U$ and $Y=\frac{U}{V}$
use that we get
$\mathrm{J}=\left|\begin{array}{ll}\frac{\delta x}{\delta u} & \frac{\delta x}{\delta v} \\ \frac{\delta y}{\delta u} & \frac{\delta y}{\delta v}\end{array}\right|$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
1 & 0 \\
\frac{1}{v} & -\frac{u}{v^{2}}
\end{array}\right| \\
& =-\frac{u}{v^{2}}-0=-\frac{u}{v^{2}} \\
& f_{U V}(u, v)=f_{X, Y}(u, u / v)|J|^{-1}=\frac{v^{2}}{|u|} \frac{1}{2 \pi} e^{-u^{2} / 2} e^{-(u / v)^{2} / 2} \\
& =\frac{v^{2}}{|u| 2 \pi} e^{-u^{2}\left(1+1 / v^{2}\right) / 2}
\end{aligned}
$$

we can find the distribution of V by integrating the joint pdf of UV over U
$f_{v}(v)=\int_{-\infty}^{\infty} f_{U V}(u, v) d u$
$=\int_{-\infty}^{\infty} \frac{v^{2}}{|u| 2 \pi} e^{-u^{2}\left(1+1 / v^{2}\right) / 2}$ since $\mathrm{f}(-\mathrm{u})=\mathrm{f}(\mathrm{u})$ for all u
$=2 \int_{0}^{\infty} \frac{v^{2}}{u 2 \pi} e^{-u^{2}\left(1+1 / v^{2}\right) / 2}$
let $w=u^{2}\left(1+1 / v^{2}\right) / 2$ so that $d w=u\left(1+1 / v^{2}\right) d u$ we sub that in and get
$2 \int_{0}^{\infty} \frac{v^{2}}{u 2 \pi} e^{-w} \frac{1}{u\left(1+1 / v^{2}\right)} d w$
$2 \int_{0}^{\infty} \frac{v^{2}}{u^{2} 2 \pi\left(1+1 / v^{2}\right)} e^{-w} d w$
$\frac{v^{2}}{u^{2} \pi\left(1+1 / v^{2}\right)} \int_{0}^{\infty} e^{-w} d w$
$=\frac{v^{2}}{u^{2} \pi\left(1+1 / v^{2}\right)}(0+1)$
$=\frac{v^{2}}{u^{2} \pi\left(1+1 / v^{2}\right)}=\frac{v^{4}}{u^{2} \pi\left(v^{2}+1\right)}$ thus X/Y is a cauchy distribution..

