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Order Statistics

Let X1,...,Xn be independent and identically distributed continuous random
variables.

Let X(1) = smallest X1,...,Xn

X(2) = the next smallest X1,...,Xn

...
X(n) = the largest X1,...,Xn

=⇒ X(1) ≤ X(2) ≤ ... ≤ X(n) which is the order statistics of X1,...,Xn.

What is the probability distribution function?
X(1) ≤ X(2) ≤ ... ≤ X(n) take on the values X1 ≤ X2 ≤ ... ≤ Xn if and only if:
X1 = Xi1

X2 = Xi2

...
Xn = Xin for some permutation (i1, i2, ..., in) of (1, 2, ..., n).
So in the terms of X1,...,Xn :
P [xi1 − ε

2 ≤ X1 ≤ xi1 + ε
2 , ..., xin −

ε
2 ≤ Xn ≤ xin + ε

2 ]
= εnfx1x2...xn

(xi1 , ..., xin)
= εnfx1

(xi1)...fxn
(xin)

Now since there are n! permutations of (1, 2, ..., n) we have that:
P [xi1 − ε

2 ≤ X1 ≤ xi1 + ε
2 , ..., xin −

ε
2 ≤ Xn ≤ xin + ε

2 ] ≈ n!εnf(x1)...f(xn) =⇒
fx(1)...x(n)

(X1, ..., Xn) = n!f(x1)...f(xn) for x1 ≤ x2 ≤ x3... ≤ xn since it does
not matter which xi = x1 etc.

Joint Distributions of Functions of Several Random Variables

Goal: Given joint probability distribution function f = f(x1, x2) for X1, X2,
and if Y1 = g1(X1, X2), Y2 = g2(X1, X2) what is the probability distribution
function of Y1, Y2?
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We need two assumptions:
1. The mapping

(
x1

x2

)
−→

(
g1(x1,x2)
g2(x1,x2)

)
=
(
y1
y2

)
is uniquely invertible, with x1 =

h1(y1, y2), x2 = h2(y1, y2)

2. g1, g2 are continuously differential, and that:

J(x1, x2) =

∣∣∣∣∣ ∂g1∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ = ∂g1
∂x1

∂g2
∂x2
− ∂g1

∂x2

∂g2
∂x1
6= 0.

Under these two assumptions we have that fx1,x2(h1(y1, y2), h2(y1, y2)) 1
|J(h1(y1,y2),h2(y1,y2))|

The idea is: P [Y1 ≤ y1, Y2 ≤ y2] = P [g1(x1, x2) ≤ y1, g2(x1, x2) ≤ y2] =∫ ∫
g1(x1,x2)≤y1,g2(x1,x2)≤y2 fx1x2

(x1, x2)dx1dx2

Make the following change of variables: x1 = h1(y1, y2), x2 = h2(y1, y2) =⇒
f −→ f(h1, h2)

dx1dx2 =

∣∣∣∣h1,1 h1,2
h2,1 h2,2

∣∣∣∣ dy1dy2
If we insert back into the integral we obtain that the integrand is:

fx1x2
(h1, h2) 1

J(h1,h2)
= fY1,Y2

(y1, y2).

Zoom notes

Order Statistics

Let X1,...,Xn (has density f(x)) be independent and identically distributed con-
tinuous random variables.

Let X1,X2,X3...
⇔X1 ≤X2 ≤X3 ≤...

X1 = min(X1,...,Xn)
X2 = next smallest
⇒fX1,X2,...,Xn(x1,..xn) = n!f(x1)f(x2)...f(xn) on the set x1 < x2 < x3 ... < xn

Example:
X1,X2,X3 ∼ U(0, 1)
x1 < x2 < x3 be the order statistics
f(x) = 1 on x ∈ (0, 1)
⇒fX1,X2,X3(x1,x2,x3) = 3! on the set 0 < x1 < x2 < x3 < 1.
Check that this is indeed a probability density.∫∫∫

0<x1<x2<x3<1
3!dx1 dx2 dx3 =

∫ 1

0

∫ x3

0

∫ x2

0
3! dx1 dx2 dx3

=
∫ 1

0

∫ x3

0
6x1 |x2

0 dx2 dx3

=
∫ 1

0

∫ x3

0
6x2 dx2 dx3

=
∫ 1

0
3x22 |

x3
0 dx3
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=
∫ 1

0
3x23 dx3

= x33 |10 = 1

Ex: E[X1] =
∫∞
−∞

∫ xn

−∞ ...
∫ x2

−∞ x1 n! f(x1)...f(xn) dx1 ... dxn

Functions of Several Random Variables

Change of Variables in multiple integrals:
∫ ∫

f(x, y)dxdy change to polar coordinates :

x =rcosθ
y=rsinθ
dxdy =Jdrdθ

=

∣∣∣∣∂x∂r ∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ drdθ
dxdy = ( ∂x

∂r
∂y
∂θ - ∂x

∂θ
∂y
∂r ) drdθ

= (cosθ rcosθ + rsinθ sinθ) drdθ
=(rcos2θ + rsin2θ) drdθ = rdrdθ

∫ ∫
f(x, y)dxdy =

∫ ∫
f(rcosθ,rsinθ)rdrdθ

If X1, X2 are continuous random variables with joint probability distribution
function f(x1, x2), and if:
|the mapping (have to be continuously differentiable and uniquely invertible)
Y1 = g1(x1, x2) | x1 → g1(x1, x2) = Y1
Y1 = g2(x1, x2) | x2 → g2(x1, x2) = Y2
Then what is the joint probability distribution function of Y1, Y2?
Start with the distribution function:
P [Y1 ≤ y1, Y2 ≤ y2] = P [g1(X1, X2) ≤ y1, g2(X1, X2) ≤ Y2]
=
∫ ∫

f(x1, x2)dx1dx2
Change variables:
u = g1(x1, x2)
v = g2(x1, x2)
Defines ”some” region of integration:
g1(x1, x2) ≤ y1 ⇒ u ≤ y1
g12(x1, x2) ≤ y2 ⇒ v ≤ y2

dudv = =

∣∣∣∣∣ ∂g1∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ dx1dx2 (matrix=J)

x1 = h1(u, v)
x2 = h2(u, v)

⇒ dx1dx2 = 1
J dudv

⇒
∫ y2
−∞

∫ y1
−∞ f [h1(u, v), h2(u, v)] 1J dudv = FY1Y2(y1, y2)

⇒ fY1,Y2(y1, y2) =
∂2FY1,Y2

∂y1∂y2

= f [h1(y1, y2), h2(y1, y2)] 1J
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extra exercises

1. theoretical excerxise 6.32 let X(1) ≤ X(2) ≤ ... ≤ X(n) be the ordered values of n independent uni-
form (0,1) random varaibles. prove that for 1 ≤ k ≤ n+ 1,

P{X(k) −X(k−1) > t} = (1− t)n

where X(0) ≡ 0, X(n+1) ≡ 1, and 0 < t < 1

since the random variables are uniform distribution, meaning that f(x) =
1
b−a = 1

1−0 = 1
1 = 1

F (y) =
∫ t
0
f(x)dx =

∫ y
0

1 dx = y
for X(k)−X(k−1) > tit means that X(k) > t which should also be true for
i > k and X(k−1) ≤ 1 − t which should also be true for i < k − 1, other
wise it’s impossible.
P (X(k) − X(k−1) > t) = P (x(1) ≤ 1 − t, ...,X(k−1) ≤ 1 − t), X(k) >
t, ...x(n) > t)

= P (X ≤ 1− t)k−1P (X > t)n−(k−1)

= (1− t)k−1(1− t)n−(k−1)
= (1− t)n−(k−1)+(k−1)

= (1− t)n

2. theoretical excercise 6.36 if X and Y are independent standard normal random variable, determine
the joint density of function of

U = X V =
X

Y

then use your result to show that X
Y has a Cauchy distribution

for normal vairable we have f(x) = 1√
2πσ2

e−(x−µ)
2/2σ2

since X and Y

are standard normal variable, meaning that µ = 0, σ = 1
sub that in we get
fX(x) = 1√

2π
e−x

2/2

fY (y) = 1√
2π
e−y

2/2

since we know X and Y are independent we get the joint probability den-
sity function:
fX,Y (x, y) = 1√

2π
e−x

2/2 1√
2π
e−y

2/2

= 1
2π e
−x2/2e−y

2/2

from U=X and V=X
Y we can get x = U and Y = U

V
use that we get

J=
δx
δu

δx
δv

δy
δu

δy
δv

4



=
1 0
1
v − u

v2

=− u
v2 − 0 = − u

v2

fUV (u, v) = fX,Y (u, u/v)|J |−1 = v2

|u|
1
2π e
−u2/2e−(u/v)

2/2

= v2

|u|2π e
−u2(1+1/v2)/2

we can find the distribution of V by integrating the joint pdf of UV over
U
fv(v) =

∫∞
−∞ fUV (u, v)du

=
∫∞
−∞

v2

|u|2π e
−u2(1+1/v2)/2 since f(-u)=f(u) for all u

= 2
∫∞
0

v2

u2π e
−u2(1+1/v2)/2

let w = u2(1 + 1/v2)/2 so that dw = u(1 + 1/v2)du we sub that in and get

2
∫∞
0

v2

u2π e
−w 1

u(1+1/v2)dw

2
∫∞
0

v2

u22π(1+1/v2)e
−wdw

v2

u2π(1+1/v2)

∫∞
0
e−wdw

= v2

u2π(1+1/v2) (0 + 1)

= v2

u2π(1+1/v2) = v4

u2π(v2+1) thus X/Y is a cauchy distribution..
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