Probability Lecture Student Notes

Charlotte Hu (lh2847) and Kiara Chen (kc3513)
November 232020

Asynchronous Lecture

Expectations of Sums

Recall that:

- In the discrete case, $E[X]=\sum_{i} x_{i} p\left(x_{i}\right)$,
- In the continuous case, $E[X]=\int x f(x) d x$

If random variables X, Y have joint pdf $f(x, y)$, then

$$
E[g(X, Y)]=\iint g(x, y) f(x, y) d x d y
$$

$g(X, Y)$ may be anything from X, to Y, to $2 X Y^{2}$.
Example: $g(x, y)=x+y$

$$
\begin{aligned}
E[g(X, Y)] & =\iint(x+y) f(x, y) d x d y \\
& =\iint x f(x, y) d x d y+\iint y f(x, y) d x d y \\
& =\int x f_{x}(x) d x+\int y f_{y}(y) d y \\
& =E[X]+E[Y]
\end{aligned}
$$

Linearity of expectation $\Rightarrow E\left[X_{1}+X_{2}+\cdots+X_{n}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\cdots+E\left[X_{n}\right]$

Note: this is not necessarily the case for infinite sums. Only if the following exchange of $\lim _{n \rightarrow \infty}$ and $\sum_{i=1}^{n} x_{i}$ holds is it true.

$$
\begin{aligned}
E\left[\sum_{i=1}^{\infty} x_{i}\right] & =E\left[\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i}\right] \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} E\left[x_{i}\right]
\end{aligned}
$$

Guaranteed to be exchangeable if $\forall i, x_{i} \geq 0$; or if $\sum_{i=1}^{n} E\left[\left|x_{i}\right|\right]<0$ (absolutely convergent)

Covariance and Variance of Sums

Definition: Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right] \\
& =E[X Y]-E[X] E[Y] \\
& =\iint x y f(x, y) d x d y-E[X] E[Y]
\end{aligned}
$$

If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$ Note: this is not necessarily true in reverse!

Covariance Properties

1. $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
2. $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
3. $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$
4. $\operatorname{Cov}\left(\sum_{i=1}^{n} x_{i}, \sum_{j=1}^{m} y_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}\left(x_{i}, y_{j}\right)$

If we combine properties 4 and 2 ,

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{i=1}^{n} x_{i}\right) & =\operatorname{Cov}\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(x_{i}, x_{j}\right)
\end{aligned}
$$

We can pull out where $x_{i}=x_{j}$, which occurs when $i=j$

$$
=\sum_{i=1}^{n} \operatorname{Var}\left(x_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(x_{i}, x_{j}\right)
$$

And then add property 1 ,

$$
=\sum_{i=1}^{n} \operatorname{Var}\left(x_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(x_{i}, x_{j}\right)
$$

If the x_{i} are independent, $\operatorname{Var}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(x_{i}\right)$

Correlation

Definition: Correlation

$$
\rho(x, y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

We can compare this to linear algebra. Recall that the dot (innder) product $\vec{x} \cdot \vec{y}=\sum_{i=1}^{n} x_{i} y_{i}$, and that the norm $|\vec{x}|=\vec{x} \cdot \vec{x}$. We can also rewrite the dot product as

$$
\vec{x} \cdot \vec{y}=|\vec{x}||\vec{y}| \cos \theta
$$

and replace each term with parts from the definition of covariance, such that

$$
\begin{aligned}
\vec{x} \cdot \vec{y} & \rightarrow \operatorname{Cov}(X, Y) & |\vec{x}| & \rightarrow \operatorname{std}(x) \\
|\vec{x}|^{2} & \rightarrow \operatorname{var}(x) & \cos \theta & \rightarrow \rho(x, y)
\end{aligned}
$$

Then, we end up with

$$
\cos \theta=\frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|}
$$

If $\rho(x, y)=0$, we say that x and y are uncorrelated,
or in vector terms, they are orthogonal $\left(\cos \theta=0 \Rightarrow \theta=\frac{\pi}{2}\right)$ If $\rho(x, y)=1$, we know that $x=a X+b$,
or in vector terms, they are colinear $(\cos \theta=1 \Rightarrow \theta=0)$

Synchronous Lecture

Expectations of Sums

Recall that for a collection of Random Variables $X_{1}+X_{2}+\ldots+X_{n}$, if $Y=X_{1}+X_{2}+\ldots+X_{n}$, then $E[X]=E\left[X_{1}+X_{2}+\ldots+X_{n}=\sum E\left[X_{i}\right]\right.$

Definition: Sample mean

$$
\bar{x}=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)
$$

If X_{i} are IID Random Variables, with each $E\left[x_{i}\right]=\mu_{i}$,

$$
\begin{aligned}
E[\bar{x}] & =\frac{1}{n}\left(\sum E\left[X_{i}\right]\right) \\
& =\frac{1}{n} \cdot \mu \\
& =\mu
\end{aligned}
$$

note: in statistics, by observing data, we infer property of the R.V.process. For here, we estimate the mean of those Random Variables by taking average of data.

$$
\begin{aligned}
E[g(X, Y)] & =\iint(x+y) f(x, y) d x d y \\
& =\iint x f(x, y) d x d y+\iint y f(x, y) d x d y \\
& =\int x f_{x}(x) d x+\int y f_{y}(y) d y \\
& =E[X]+E[Y]
\end{aligned}
$$

Covariance

Definition: Covariance

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right]
$$

If X, Y independent, then $\operatorname{Cov}(X, Y)=0$

Correlation

Definition: Correlation

$$
\rho(x, y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

with $\rho(x, y) \in[-1,1]$.
If we consider $\operatorname{Cov}(a X, Y)$,

$$
\begin{aligned}
\operatorname{Cov}(a X, Y) & =a \operatorname{Cov}(X, Y) \\
\rho(a X, Y) & =\frac{a \operatorname{Cov}(X, Y)}{\sqrt{\operatorname{var}(a X)} \sqrt{\operatorname{var}(Y)}} \\
& =\frac{a \operatorname{Cov}(X, Y)}{\sqrt{\not \mathscr{A}^{2} \operatorname{var}(X)} \sqrt{\operatorname{var(Y)}}} \\
& =\frac{a}{|a|} \rho(X, Y)
\end{aligned}
$$

note: correlation shows that we scale the random variables by some characteristic size, and then we compute Covariances.

Sample Variance

Definition: Sample Variance
If $X_{1}+X_{2}+\cdots+X_{n}$ are IID Random Variables with mean μ and variance σ^{2}, then the sample variance is given by

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

Note that $E\left[S^{2}\right]=\sigma^{2}$.
Student question about how to visualize these computations. There are three graphs of visualization of different covariances.

Exercises

Theoretical exercise 7.23

If $Y=a+b X$, what is $\rho(X, Y)$?

$$
\begin{aligned}
\operatorname{Var}(X) & =\sigma^{2} \\
\operatorname{Var}(Y) & =\operatorname{Var}(a+b X) \\
& =b^{2} \sigma^{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\operatorname{Cov}(X, a+b X) \\
& =E(X-\mu)[\alpha+b X-(\alpha+b \mu)] \\
& =E[(X-\mu)(b X-b \mu)] \\
& =b E[(X-\mu)(X-\mu)] \\
& =b \sigma^{2}
\end{aligned}
$$

$$
\begin{aligned}
\rho(X, Y) & =\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}} \\
& =\frac{b \sigma^{\not}}{\sigma \cdot|b| \sigma} \\
& =\frac{b}{|b|}
\end{aligned}
$$

$\underline{1 \text { if } b>0, \text { and }-1 \text { if } b<0}$

Theoretical exercise 7.4

Let X be a Random Variable with

$$
\begin{aligned}
E[X] & =\mu<\infty \\
\operatorname{Var}[X] & =\sigma^{2}<\infty
\end{aligned}
$$

and $g=g(x)$ is twice differentiable, how to approximate $E[g(x)]$?
By Taylor Series, we know that

$$
\begin{aligned}
& g(x) \approx g(\mu)+g^{\prime}(\mu)(x-\mu)+\frac{g^{\prime \prime}(\mu)}{2}(x-\mu)^{2} \\
& E[g(x)] \approx E\left[g(\mu)+g^{\prime}(\mu)(x-\mu)+\frac{g^{\prime \prime}(\mu)}{2}(x-\mu)^{2}\right] \\
&=g(\mu)+g^{\prime}(\mu) E[X-\mu]+\frac{g^{\prime \prime}(\mu)}{2} E\left[(X-\mu)^{2}\right] \\
&=g(\mu)+\frac{g^{\prime \prime}(\mu)}{2} \sigma^{2} \\
& E[g(x)] \approx g(\mu)+\frac{g^{\prime \prime}(\mu)}{2} \sigma^{2}
\end{aligned}
$$

