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1 Pre-recorded Lecture

1.1 Conditional Expectation

For Continuous Random Variable:

E[X|Y = y] =

∫
xfx|y(x|y) dx =

∫
x
f(x, y)

fY (y)
dx

For Discrete Random Variable:

E[X|Y = y] =
∑
i

xipX|Y (xi|y) =
∑
i

xiP [X = xi|Y = y]

For the Conditional Expectation of a function of a random variable:

E[g(x)|Y = y] =

∫
g(x)fX|Y (x|y) dx

Denote by E[X|Y ] = g(Y ) which is a function of the random variable Y,
and itself is a random variable here
Whereas: E[X|Y = y] is not a random variable

E[E[X|Y ]] =

∫
E[X|Y = y]FY (y) dy

=

∫
y

∫
x

xfX|Y (x|y) dxfY (y) dy
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=

∫ ∫
f(x, y) dx dy = E[X]

This calculation shows that E[E[X|Y ]] = E[X] (Note: E[E[X|Y ]]is a
iterated expectation)

1.2 Conditional Variance

V ar(X|Y ) = E[(X − E[X|Y ])2|Y ] = E[X2|Y ]− (E[X|Y ])2

Since V ar(X|Y )is a random variable of function Y, we can do this:

E[V ar(X|Y )] = E[E[X2|Y ]− (E[X|Y ])2]

= E[X2]− E[E[X|Y ]2] (∗)
Also we know that E[E[X—Y]]=E[X], so:

V ar(E[X|Y ]) = E[(E[X|Y ])2]− (E[E[X|Y ]])2

Here(E[E[X|Y ]])2 = E[X]

Hence, V ar(E[X|Y ]) = E[(E[X|Y ])2]− (E[X])2 (**)

(∗) + (∗∗) = E[V ar(X|Y )] + V ar(E[X|Y ])

= E[X2]− (E[X])2 = V ar(X)

We have the following result:

Conditional Variance Formula:

V ar(X) = V ar(E[X|Y ]) + E[V ar(X|Y )]

Example: Let x1, x2, ..., xn be independent random variables, and N > 0
is an intervalued random variable. What is the V ar(

∑N
i=1Xi)? (Hint: The

sum depends on several random variables including all the x’s and the N,
so we have to conditioned on N first to see with fixed values of N what’s
the variance of the sum)
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1.3 Conditional Expectation and Prediction

Consider two random variables X,Y. We observe X and predict what value
Y will take. Let g(x) be our predictor (i.e. Observe X=x, predict y=g(x))
Once choice for a ”good” predictor is to minimize the square error:

min
g
E[(Y − g(x))2] = min

g

∫ ∫
(y − g(x))2f(x, y) dx dy

Proposition: E[(Y − g(x))2] > E[(Y − E[Y |X])2]

Example: the best linear predictor of Y

i.e. Find the best a,b to minimize E[(Y − (a+ bx))2]
sol: Because a = µY − ρσY µX

σX
, b = ρ σY

σX

g(x) = µY +
ρσY
σX

(x− µx)

And using these values of a,b, we can compute the mean square error:

E[(Y − (a+ bx))2] = σ2
Y (1− ρ2)

This means that if ρ = ±1 then the mean square error is zero

2 In-class Lecture

2.1 Conditional Expectation

E[X|Y = y] =

∫
x · fX|Y (x, y) dx

Note: The above equation depends on y.

E[E[X|Y ]] =

∫
E[X|Y = y] · fY (y) dy

Note: E[X|Y ] is a random variable

=

∫ ∫
x · fX|Y (x, y) dxfY (y) dy
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=

∫ ∫
x · fY (y)

f(x, y)

fY (y)
dx dy

=

∫ ∫
x · f(x, y) dx dy = E[X]

Example: Let N be the number of customers entering a certain store and
Xi be the amount of money that the customer i spends. The two random
variables are independent to each other. (Xi is an independent and identi-
cally distributed random variable.) What is the expected value of the fol-
lowing expression?

T =
N∑
i=1

Xi

Solution:

E[T ] = E[
N∑
i=1

Xi] = E[E[T/N ]] = E[E[
N∑
i=1

Xi/N ]]

From the property we concluded above:

E[
N∑
i=1

Xi/N = n] = E[
n∑
i=1

Xi] = n · E[Xi]

Therefore, we conclude that

E[T ] = E[N · E[Xi]] = E[N ] · E[Xi]

2.2 Conditional Variance

V ar(X|Y ) is similar to V ar(X) but all the expectations are conditional on
the fact that Y is given.

V ar(X|Y ) = E[(X − E[X|Y ])2|Y ]

V ar(X|Y ) = E[X2|Y ]− (E[X|Y ])2

So
E[V ar(X|Y )] = E[E[X2|Y ]]− E[(E[X|Y ])2]
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= E[X2]− E[(E[X|Y ])2]

Since
E[E[X|Y ]] = E[X]

We have
V ar(E[X|Y ]) = E[(E[X|Y ])2]− (E[X])2

Thus, the conditional variance formula is

V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ])

Example: Following the previous example, we want to calculate the

conditional variance.

V ar(T ) = V ar(
N∑
i=1

Xi)

= E[V ar(
N∑
i=1

Xi|N)] + V ar(E[
N∑
i=1

Xi|N ])

= E[N · V ar(Xi) + V ar[N · E[Xi]]

= V ar[Xi] · E[N ] + (E[Xi]
2) · V ar[N ]

3 Additional Examples

1. Theoretical Exercise 7.26

Show that if X and Y are independent, then

E[X|Y = y] = E[X] for all y

a. In the discrete case:

From the definition of conditional expectation we have

E[X|Y = y] =
∑
i

xiP [X = xi|Y = y] =
∑
i

xi
P [X = xi, Y = y]

P [Y = y]

5



Since X and Y are independent,

P [X = xi, Y = y]

P [Y = y]
=
P [X = xi]P [Y = y]

P [Y = y]
= P [X = xi]

So,

E[X|Y = y] =
∑
i

xiP [X = xi|Y = y]

=
∑
i

xiP [X = xi]

= E[X] for all y

b. In the continuous case:

Similarly from the definition of conditional expectation,

E[X|Y = y] =

∫
x
f(x, y)

fY (y)
dx

Since X and Y are independent,

f(x, y)

fY (y)
=
fX(x)fY (y)

fY (y)
= fX(x)

Therefore

E[X|Y = y] =

∫
x
f(x, y)

fY (y)
dx

=

∫
x fX(x) dx

= E[X] for all y

2. Theoretical Exercise 7.30

Let X1, ..., Xn be independent and identically distributed random
variables. Find

E[X1|X1 + ...+Xn = x]

We know that

E[X1 + ...+Xn|X1 + ...+Xn = x] = x
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And, by properties of conditional expectation,

E[X1 + ...+Xn|X1 + ...+Xn] = E

[
n∑
i=1

Xi|X1 + ...+Xn = x

]

=
n∑
i=1

E[Xi|X1 + ...+Xn = x]

x = n E[X1|X1 + ...+Xn = x]

Rearranging the above equation,

E[X1|X1 + ...+Xn = x] =
x

n
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