Conditional Expectation and Prediction 7.5-7.6

Eva Gao, Abby Williams, Jeffery Huang

November 25th

1 Pre-recorded Lecture

1.1 Conditional Expectation

For Continuous Random Variable:

$$
E[X \mid Y=y]=\int x f_{x \mid y}(x \mid y) d x=\int x \frac{f(x, y)}{f_{Y}(y)} d x
$$

For Discrete Random Variable:

$$
E[X \mid Y=y]=\sum_{i} x_{i} p_{X \mid Y}\left(x_{i} \mid y\right)=\sum_{i} x_{i} P\left[X=x_{i} \mid Y=y\right]
$$

For the Conditional Expectation of a function of a random variable:

$$
E[g(x) \mid Y=y]=\int g(x) f_{X \mid Y}(x \mid y) d x
$$

Denote by $E[X \mid Y]=g(Y)$ which is a function of the random variable Y , and itself is a random variable here
Whereas: $E[X \mid Y=y]$ is not a random variable

$$
\begin{gathered}
E[E[X \mid Y]]=\int E[X \mid Y=y] F_{Y}(y) d y \\
\quad=\int_{y} \int_{x} x f_{X \mid Y}(x \mid y) d x f_{Y}(y) d y
\end{gathered}
$$

$$
=\iint f(x, y) d x d y=E[X]
$$

This calculation shows that $E[E[X \mid Y]]=E[X]$ (Note: $E[E[X \mid Y]]$ is a iterated expectation)

1.2 Conditional Variance

$$
\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right]=E\left[X^{2} \mid Y\right]-(E[X \mid Y])^{2}
$$

Since $\operatorname{Var}(X \mid Y)$ is a random variable of function Y , we can do this:

$$
\begin{gather*}
E[\operatorname{Var}(X \mid Y)]=E\left[E\left[X^{2} \mid Y\right]-(E[X \mid Y])^{2}\right] \\
=E\left[X^{2}\right]-E\left[E[X \mid Y]^{2}\right] \tag{*}
\end{gather*}
$$

Also we know that $\mathrm{E}[\mathrm{E}[\mathrm{X}-\mathrm{Y}]]=\mathrm{E}[\mathrm{X}]$, so:

$$
\operatorname{Var}(E[X \mid Y])=E\left[(E[X \mid Y])^{2}\right]-(E[E[X \mid Y]])^{2}
$$

$\operatorname{Here}(E[E[X \mid Y]])^{2}=E[X]$
Hence, $\operatorname{Var}(E[X \mid Y])=E\left[(E[X \mid Y])^{2}\right]-(E[X])^{2}$

$$
\begin{gather*}
(*)+(* *)=E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(E[X \mid Y]) \tag{}\\
=E\left[X^{2}\right]-(E[X])^{2}=\operatorname{Var}(X)
\end{gather*}
$$

We have the following result:
Conditional Variance Formula:

$$
\operatorname{Var}(X)=\operatorname{Var}(E[X \mid Y])+E[\operatorname{Var}(X \mid Y)]
$$

Example: Let $x_{1}, x_{2}, \ldots, x_{n}$ be independent random variables, and $N>0$ is an intervalued random variable. What is the $\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)$? (Hint: The sum depends on several random variables including all the x's and the N , so we have to conditioned on N first to see with fixed values of N what's the variance of the sum)

1.3 Conditional Expectation and Prediction

Consider two random variables X, Y. We observe X and predict what value Y will take. Let $\mathrm{g}(\mathrm{x})$ be our predictor (i.e. Observe $\mathrm{X}=\mathrm{x}$, predict $\mathrm{y}=\mathrm{g}(\mathrm{x})$) Once choice for a "good" predictor is to minimize the square error:

$$
\min _{g} E\left[(Y-g(x))^{2}\right]=\min _{g} \iint(y-g(x))^{2} f(x, y) d x d y
$$

Proposition: $E\left[(Y-g(x))^{2}\right] \geqslant E\left[(Y-E[Y \mid X])^{2}\right]$
Example: the best linear predictor of Y
i.e. Find the best a,b to minimize $E\left[(Y-(a+b x))^{2}\right]$
sol: Because $a=\mu_{Y}-\frac{\rho \sigma_{Y} \mu_{X}}{\sigma_{X}}, b=\rho \frac{\sigma_{Y}}{\sigma_{X}}$

$$
g(x)=\mu_{Y}+\frac{\rho \sigma_{Y}}{\sigma_{X}}\left(x-\mu_{x}\right)
$$

And using these values of a, b, we can compute the mean square error:

$$
E\left[(Y-(a+b x))^{2}\right]=\sigma_{Y}^{2}\left(1-\rho^{2}\right)
$$

This means that if $\rho= \pm 1$ then the mean square error is zero

2 In-class Lecture

2.1 Conditional Expectation

$$
E[X \mid Y=y]=\int x \cdot f_{X \mid Y}(x, y) d x
$$

Note: The above equation depends on y.

$$
E[E[X \mid Y]]=\int E[X \mid Y=y] \cdot f_{Y}(y) d y
$$

Note: $E[X \mid Y]$ is a random variable

$$
=\iint x \cdot f_{X \mid Y}(x, y) d x f_{Y}(y) d y
$$

$$
\begin{aligned}
& =\iint x \cdot f_{Y}(y) \frac{f(x, y)}{f_{Y}(y)} d x d y \\
& =\iint x \cdot f(x, y) d x d y=E[X]
\end{aligned}
$$

Example: Let N be the number of customers entering a certain store and X_{i} be the amount of money that the customer i spends. The two random variables are independent to each other. (X_{i} is an independent and identically distributed random variable.) What is the expected value of the following expression?

$$
T=\sum_{i=1}^{N} X_{i}
$$

Solution:

$$
E[T]=E\left[\sum_{i=1}^{N} X_{i}\right]=E[E[T / N]]=E\left[E\left[\sum_{i=1}^{N} X_{i} / N\right]\right]
$$

From the property we concluded above:

$$
E\left[\sum_{i=1}^{N} X_{i} / N=n\right]=E\left[\sum_{i=1}^{n} X_{i}\right]=n \cdot E\left[X_{i}\right]
$$

Therefore, we conclude that

$$
E[T]=E\left[N \cdot E\left[X_{i}\right]\right]=E[N] \cdot E\left[X_{i}\right]
$$

2.2 Conditional Variance

$\operatorname{Var}(X \mid Y)$ is similar to $\operatorname{Var}(X)$ but all the expectations are conditional on the fact that Y is given.

$$
\begin{gathered}
\operatorname{Var}(X \mid Y)=E\left[(X-E[X \mid Y])^{2} \mid Y\right] \\
\operatorname{Var}(X \mid Y)=E\left[X^{2} \mid Y\right]-(E[X \mid Y])^{2}
\end{gathered}
$$

So

$$
E[\operatorname{Var}(X \mid Y)]=E\left[E\left[X^{2} \mid Y\right]\right]-E\left[(E[X \mid Y])^{2}\right]
$$

$$
=E\left[X^{2}\right]-E\left[(E[X \mid Y])^{2}\right]
$$

Since

$$
E[E[X \mid Y]]=E[X]
$$

We have

$$
\operatorname{Var}(E[X \mid Y])=E\left[(E[X \mid Y])^{2}\right]-(E[X])^{2}
$$

Thus, the conditional variance formula is

$$
\operatorname{Var}(X)=E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(E[X \mid Y])
$$

Example: Following the previous example, we want to calculate the conditional variance.

$$
\begin{gathered}
\operatorname{Var}(T)=\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) \\
=E\left[\operatorname{Var}\left(\sum_{i=1}^{N} X_{i} \mid N\right)\right]+\operatorname{Var}\left(E\left[\sum_{i=1}^{N} X_{i} \mid N\right]\right) \\
=E\left[N \cdot \operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left[N \cdot E\left[X_{i}\right]\right]\right. \\
=\operatorname{Var}\left[X_{i}\right] \cdot E[N]+\left(E\left[X_{i}\right]^{2}\right) \cdot \operatorname{Var}[N]
\end{gathered}
$$

3 Additional Examples

1. Theoretical Exercise 7.26

Show that if X and Y are independent, then

$$
E[X \mid Y=y]=E[X] \text { for all } y
$$

a. In the discrete case:

From the definition of conditional expectation we have

$$
E[X \mid Y=y]=\sum_{i} x_{i} P\left[X=x_{i} \mid Y=y\right]=\sum_{i} x_{i} \frac{P\left[X=x_{i}, Y=y\right]}{P[Y=y]}
$$

Since X and Y are independent,

$$
\frac{P\left[X=x_{i}, Y=y\right]}{P[Y=y]}=\frac{P\left[X=x_{i}\right] P[Y=y]}{P[Y=y]}=P\left[X=x_{i}\right]
$$

So,

$$
\begin{aligned}
E[X \mid Y=y] & =\sum_{i} x_{i} P\left[X=x_{i} \mid Y=y\right] \\
& =\sum_{i} x_{i} P\left[X=x_{i}\right] \\
& =E[X] \text { for all } y
\end{aligned}
$$

b. In the continuous case:

Similarly from the definition of conditional expectation,

$$
E[X \mid Y=y]=\int x \frac{f(x, y)}{f_{Y}(y)} d x
$$

Since X and Y are independent,

$$
\frac{f(x, y)}{f_{Y}(y)}=\frac{f_{X}(x) f_{Y}(y)}{f_{Y}(y)}=f_{X}(x)
$$

Therefore

$$
\begin{aligned}
E[X \mid Y=y] & =\int x \frac{f(x, y)}{f_{Y}(y)} d x \\
& =\int x f_{X}(x) d x \\
& =E[X] \text { for all } y
\end{aligned}
$$

2. Theoretical Exercise 7.30

Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables. Find

$$
E\left[X_{1} \mid X_{1}+\ldots+X_{n}=x\right]
$$

We know that

$$
E\left[X_{1}+\ldots+X_{n} \mid X_{1}+\ldots+X_{n}=x\right]=x
$$

And, by properties of conditional expectation,

$$
\begin{aligned}
E\left[X_{1}+\ldots+X_{n} \mid X_{1}+\ldots+X_{n}\right] & =E\left[\sum_{i=1}^{n} X_{i} \mid X_{1}+\ldots+X_{n}=x\right] \\
& =\sum_{i=1}^{n} E\left[X_{i} \mid X_{1}+\ldots+X_{n}=x\right] \\
x & =n E\left[X_{1} \mid X_{1}+\ldots+X_{n}=x\right]
\end{aligned}
$$

Rearranging the above equation,

$$
E\left[X_{1} \mid X_{1}+\ldots+X_{n}=x\right]=\frac{x}{n}
$$

