Moment Generating Functions 7.7 Properties of Normal Random Variables 7.8

Luwei Yang

November 30, 2020

1 Moment Generating Functions (Ross 7.7)

Moment Generating Function $M(t)$ is

$$
\begin{aligned}
M(t) & =E\left[e^{t X}\right] \\
& = \begin{cases}\sum_{x} e^{t x} p(x) & \text { if } \mathrm{X} \text { is discrete with mass function } p(x) \\
\int e^{t x} f(x) d x & \text { if } \mathrm{X} \text { is continuous with density } f(x)\end{cases}
\end{aligned}
$$

where t is a number, X is a random variable, and $f(x)$ is a probability density function of X . (Note: The function $M(t)$ for $t \neq 0$ might not exist)

We can think of the moment generating function $M_{X}(t)$ as a map from the probability density function $f(x)$ to a new function with e over the region where $f(x)$ is not zero.

If two functions have the same moment generating function, then they must have the same distribution.
We call $M(t)$ the moment generating function because all of the moments of X can be obtained by successively differentiating $M(t)$ and then evaluating the result at $t=0$.
For example:

$$
M(0)=E\left[e^{0}\right]=E[1]=1
$$

The $1^{\text {st }}$ derivative of $\mathrm{M}(\mathrm{t})$ is

$$
\begin{aligned}
M^{\prime}(t) & =\frac{\partial}{\partial t} \int e^{t x} f(x) d x \\
& =\int \frac{\partial}{\partial t} e^{t x} f(x) d x \\
& =\int x e^{t x} f(x) d x
\end{aligned}
$$

Thus,

$$
M^{\prime}(0)=\int x e^{0} f(x) d x=\int x f(x) d x=E[X]
$$

The $2^{\text {nd }}$ derivative of $M(t)$ is

$$
\begin{aligned}
M^{\prime \prime}(t) & =\frac{\partial}{\partial t} M^{\prime}(t) \\
& =\frac{\partial}{\partial t} E\left[X e^{t X}\right] \\
& =E\left[\frac{\partial}{\partial t}\left(X e^{t X}\right)\right] \\
& =E\left[X^{2} e^{t X}\right]
\end{aligned}
$$

Thus,

$$
M^{\prime \prime}(0)=E\left[X^{2}\right]
$$

In general, the $\mathrm{n}^{\text {th }}$ derivative of $\mathrm{M}(\mathrm{t})$ is

$$
M^{(n)}(t)=E\left[X^{n} e^{t X}\right] \quad n \geq 1
$$

The $\mathrm{n}^{\text {th }}$ moment of X is

$$
M^{(n)}(0)=E\left[X^{n}\right]
$$

1.1 Example 7d Standard Normal Distribution

Let Z be a standard normal random variable with parameters 0 and 1 , we have

$$
\begin{aligned}
M(t) & =E\left[e^{t Z}\right]=\int_{-\infty}^{\infty} e^{t z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z=e^{\frac{t^{2}}{2}} \quad \text { (steps in textbook) } \\
M^{\prime}(t)=\frac{2 t}{2} e^{\frac{t^{2}}{2}}=t e^{\frac{t^{2}}{2}} & M^{\prime}(0)=0=\operatorname{Mean}(E[Z]) \\
M^{\prime \prime}(t)=e^{\frac{t^{2}}{2}}+t^{2} e^{\frac{t^{2}}{2}} & M^{\prime \prime}(0)=1=\operatorname{Var}[Z]=E\left[Z^{2}\right]
\end{aligned}
$$

For an arbitrary normal random variable $X=\mu+\sigma Z$ with parameters μ and σ^{2},

$$
M_{X}(t)=E\left[e^{t X}\right]=E\left[e^{t(\mu+\sigma Z)}\right]=e^{t \mu} E\left[e^{t \sigma Z}\right]=e^{t \mu} e^{\frac{t^{2} \sigma^{2}}{2}}=e^{\mu t+\frac{t^{2} \sigma^{2}}{2}}
$$

If X, Y are independent, then

$$
M(t)=E\left[e^{t(X+Y)}\right]=E\left[e^{t X} e^{t Y}\right]=E\left[e^{t X}\right] E\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t)
$$

If $M(t)<\infty$ and exists in some region about $t=0$, then this uniquely defines the probability distribution.

2 Joint Moment Generating Function

If X_{1}, \ldots, X_{n} have joint probability density function $f\left(x_{1}, \ldots, x_{n}\right)$, then

$$
M\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\int \ldots \int e^{t_{1} x_{1}+t_{2} x_{2}+\ldots+t_{n} x_{n}} f\left(x_{1}, \ldots, x_{n}\right) d \vec{x}=E\left[e^{t_{1} x_{1}+t_{2} x_{2}+\ldots+t_{n} x_{n}}\right]
$$

The individual moment generating functions can be obtained from $M\left(t_{1}, \ldots, t_{n}\right)$ by letting all but one of the t_{i} 's be 0 . That is,

$$
M_{X_{i}}(t)=M\left(0, \ldots, 0, t_{i}, 0, \ldots, 0\right)
$$

where the t_{i} is in the $\mathrm{i}^{\text {th }}$ place.

3 Additional Properties of Normal Random Variables (Ross 7.8)

Let Z_{1}, \ldots, Z_{n} be a set of n independent standard normal random variables. For some constants $a_{i j}, 1 \leq i \leq$ $m, 1 \leq j \leq n$, and $\mu_{i}, 1 \leq i \leq m$, define:

$$
\begin{array}{r}
X_{1}=a_{11} Z_{1}+\ldots+a_{1 n} Z_{n}+\mu_{1} \\
X_{2}=a_{21} Z_{1}+\ldots+a_{2 n} Z_{n}+\mu_{2} \\
\vdots \\
X_{m}=a_{m 1} Z_{1}+\ldots+a_{m n} Z_{n}+\mu_{m}
\end{array}
$$

The random variables X_{1}, \ldots, X_{m} are said to have a multivariate normal distribution. We can also write the equations in the form of matrix multiplication:

$$
\begin{gathered}
\vec{X}=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{m}
\end{array}\right)=A \vec{Z}+\vec{\mu}=\left(\begin{array}{c}
a_{11} \cdots a_{1 n} \\
\vdots \ddots \\
a_{m 1} \cdots a_{m n}
\end{array}\right)\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{n}
\end{array}\right)+\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{m}
\end{array}\right) \\
E\left[X_{i}\right]=\mu_{i} \\
\operatorname{Var}\left[X_{i}\right]=\operatorname{Var}\left[\sum_{j=1}^{n} a_{i j} Z_{j}\right]=\sum_{j=1}^{n} a_{i j}^{2} \\
\operatorname{cov}\left(X_{i}, X_{j}\right)=\operatorname{cov}\left(\sum_{k=1}^{n} a_{i k} Z_{k}, \sum_{k^{\prime}=1}^{n} a_{j k^{\prime}} Z_{k^{\prime}}\right) \\
=\sum_{k, k^{\prime}} a_{i k^{\prime}} a_{j k^{\prime}} \operatorname{cov}\left(Z_{k}, Z_{k^{\prime}}\right) \\
\left.=\sum_{k=1}^{n} a_{i k} a_{j k} \quad \text { (inner product of } \overrightarrow{a_{i}} \text { and } \overrightarrow{a_{j}}\right)
\end{gathered}
$$

(Because Z_{j} 's are independent, $\operatorname{cov}\left(Z_{k}, Z_{k^{\prime}}\right)=0$ unless $k=k^{\prime}$. So the only non-zero terms in the summation are when $k=k^{\prime}$)

If $C=A A^{T}$, then $C=\left(\begin{array}{c}a_{11} \cdots a_{1 n} \\ \vdots \ddots \vdots \\ a_{m 1} \cdots a_{m n}\end{array}\right)\left(\begin{array}{c}a_{11} \cdots a_{m 1} \\ \vdots \ddots \\ a_{1 n} \cdots a_{m n}\end{array}\right), C_{i j}=\sum_{k} a_{i k} a_{j k}$ is the covariance of X_{i} and X_{j}.
C is the covariance matrix of $\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{m}\end{array}\right)$:

- C is $m \times m$
- C is symmetric
- C is semi-positive definite

4 The Joint Moment Generating Function for X_{1}, \ldots, X_{m}

$$
M\left(t_{1}, \ldots, t_{m}\right)=e^{\sum_{i=1}^{m} t_{i} \mu_{i}+\frac{1}{2} \sum_{i, j} t_{i} t_{j} C_{i j}}
$$

Since M determines the probability density function, and M depends only on $\mu_{i}, C_{i j}$, then the joint probability density function must only depend on $\mu_{i}, C_{i j}$.

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{m}\right) & =\frac{1}{(2 \pi)^{\frac{m}{2}} \sqrt{|C|}} e^{-\frac{1}{2}(\vec{X}-\vec{\mu})^{T} C^{-1}(\vec{X}-\vec{\mu})} \\
C & =\left(\begin{array}{c}
C_{11} \cdots C_{1 m} \\
\vdots \ddots \\
C_{m 1} \cdots C_{m m}
\end{array}\right)
\end{aligned}
$$

4.1 Proposition 8.1

If X_{1}, \ldots, X_{n} are independent and identically distributed normal random variables with mean μ and variance σ^{2}, then the sample mean \bar{X} and the sample variance S^{2} are independent. \bar{X} is a normal random variable with mean μ and variance $\frac{\sigma^{2}}{n} ; \frac{(n-1) S^{2}}{\sigma^{2}}$ is a chi-squared random variable with $n-1$ degrees of freedom.

5 Additional Examples

5.1 Example 7h

Show that if X and Y are independent normal random variables with respective parameters $\left(\mu_{1}, \sigma_{1}{ }^{2}\right)$ and $\left(\mu_{2}, \sigma_{2}{ }^{2}\right)$, then $X+Y$ is normal with mean $\mu_{1}+\mu_{2}$ and variance $\sigma_{1}{ }^{2}+{\sigma_{2}}^{2}$.

Solution:

$$
\begin{aligned}
M_{X+Y}(t) & =M_{X}(t) M_{Y}(t) \\
& =\left(e^{\frac{\sigma_{1}^{2} t^{2}}{2}+\mu_{1} t}\right)\left(e^{\frac{\sigma_{2}^{2} t^{2}}{2}+\mu_{2} t}\right) \\
& =e^{\left(\frac{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) t^{2}}{2}+\left(\mu_{1}+\mu_{2}\right) t\right)}
\end{aligned}
$$

which is the moment generating function of a normal random variable with mean $\mu_{1}+\mu_{2}$ and variance $\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}$. The desired result then follows because the moment generating function uniquely determines the distribution.

5.2 Example 7L

Let X and Y be independent normal random variables, each with mean μ and variance σ^{2}. Show that $X+Y$ and $X-Y$ are independent by computing their joint moment generating function:

Solution:

$$
\begin{aligned}
E\left[e^{t(X+Y)+s(X-Y)}\right] & =E\left[e^{(t+s) X+(t-s) Y}\right] \\
& =E\left[e^{(t+s) X}\right] E\left[e^{(t-s) Y}\right] \\
& =\left(e^{\frac{\mu(t+s)+\sigma^{2}(t+s)^{2}}{2}}\right)\left(e^{\frac{\mu(t-s)+\sigma^{2}(t-s)^{2}}{2}}\right) \\
& =\left(e^{2 \mu t+\sigma^{2} t^{2}}\right)\left(e^{\sigma^{2} s^{2}}\right)
\end{aligned}
$$

We recognize the preceding as the joint moment generating function of the sum of a normal random variable with mean 2μ and variance $2 \sigma^{2}$ (which is $X+Y$) and an independent normal random variable with mean 0 and variance $2 \sigma^{2}$ (which is $X-Y$). Because the joint moment generating function uniquely determines the joint distribution, it follows that $X+Y$ and $X-Y$ are independent normal random variables.

5.3 Exercise 1

Suppose X has the moment generating function

$$
M_{X}(t)=(1-2 t)^{-\frac{1}{2}} \text { for } t<\frac{1}{2}
$$

Find the first and second moments of X.
Solution:
We have

$$
\begin{aligned}
& M_{X}^{\prime}(t)=-\frac{1}{2}(1-2 t)^{-\frac{3}{2}}(-2)=(1-2 t)^{-\frac{3}{2}} \\
& M_{X}^{\prime \prime}(t)=-\frac{3}{2}(1-2 t)^{-\frac{5}{2}}(-2)=3(1-2 t)^{-\frac{5}{2}}
\end{aligned}
$$

So that

$$
\begin{aligned}
& E[X]=M_{X}^{\prime}(0)=(1-2 \cdot 0)^{-\frac{3}{2}}=1 \\
& E\left[X^{2}\right]=M_{X}^{\prime \prime}(0)=3(1-2 \cdot 0)^{-\frac{5}{2}}=3
\end{aligned}
$$

5.4 Exercise 2

Suppose that you have a fair 4 -sided die, and let X be the random variable representing the value of the number rolled.
(a) Write down the moment generating function of X .
(b) Use this moment generating function to compute the first and second moments of X.

Solution:
(a):

$$
\begin{aligned}
M_{X}(t) & =E\left[e^{t X}\right] \\
& =e^{1 \cdot t} \frac{1}{4}+e^{2 \cdot t} \frac{1}{4}+e^{3 \cdot t} \frac{1}{4}+e^{4 \cdot t} \frac{1}{4} \\
& =\frac{1}{4}\left(e^{1 \cdot t}+e^{2 \cdot t}+e^{3 \cdot t}+e^{4 \cdot t}\right)
\end{aligned}
$$

(b): We have

$$
\begin{aligned}
& M_{X}^{\prime}(t)=\frac{1}{4}\left(e^{1 \cdot t}+2 e^{2 \cdot t}+3 e^{3 \cdot t}+4 e^{4 \cdot t}\right) \\
& M_{X}^{\prime \prime}(t)=\frac{1}{4}\left(e^{1 \cdot t}+4 e^{2 \cdot t}+9 e^{3 \cdot t}+16 e^{4 \cdot t}\right)
\end{aligned}
$$

so

$$
E[X]=M_{X}^{\prime}(0)=\frac{1}{4}(1+2+3+4)=\frac{5}{2}
$$

and

$$
E\left[X^{2}\right]=M_{X}^{\prime \prime}(0)=\frac{1}{4}(1+4+9+16)=\frac{15}{2}
$$

