Theory of Probability notes

md4178

December 22020

Weak Law of Large Numbers

Definition: Let x_{1} and $x_{2} \ldots$ be I.I.D random variables, with $\mathrm{E}\left[x_{i}\right]=\mu<\infty$, and $\operatorname{Var}\left[x_{i}\right]=\sigma^{2}<\infty$. For any $\epsilon>0,|x+y|$
$\mathrm{P}\left[\left|\left(\frac{1}{n}\right) \sum_{i=1}^{n} x_{i}\right|-\mu>=\epsilon\right] \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$.
We need to find some inequalities to prove Weak Law of Large Numbers.
Markov Inequality: If we have a random variable $\mathrm{x}>=0$, then for any a> $0, \mathrm{P}[\mathrm{X}>=\mathrm{a}]<=\frac{E[X]}{a}$
proof of Markov Inequality:

$$
\begin{gathered}
a P[X>=a]=\int_{a}^{\infty} a f(x) d x \\
<=\int_{a}^{\infty} a f(x) d x \\
<=\int_{0}^{\infty} a f(x) d x=E[X]
\end{gathered}
$$

Therefore,

$$
a P[X>=a]<=E[x]
$$

and

$$
P[X>=a]<=\frac{E[x]}{a}
$$

Chebyshevi's Inequality: We have a random variable x with $\mathrm{E}[\mathrm{x}]=\mu<\infty$ and $\operatorname{Var}[x]=\sigma^{2}<\infty$. Then if we have $\mathrm{k}>0$,

$$
P[|x-\mu|>=k]<=\frac{\sigma^{2}}{k^{2}}
$$

proof of Chebyshevi's Inequality:
From Markov Inequality, we know

$$
P\left[(x-\mu)^{2}>=k^{2}\right]<=\frac{E\left[(x-\mu)^{2}\right]}{k^{2}}
$$

and this is equivalent to Chebyshevi's Inequality

$$
P[|x-\mu|>=k]<=\frac{\sigma^{2}}{k^{2}}
$$

Proof of Weak Law of Large Numbers(WLLN): We have

$$
\begin{gathered}
E\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}\right]=\mu \\
\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}\right]=\frac{\sigma^{2}}{n}
\end{gathered}
$$

Using Chebyshevi's Inequality:

$$
\begin{gathered}
P\left[\left|\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu\right|>=\epsilon\right]<=\frac{\frac{\sigma^{2}}{n}}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}} \\
\lim _{n \rightarrow \infty} P\left[\left|\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu\right|>=\epsilon\right]=0
\end{gathered}
$$

Central Limit Theorem: Let x_{1} and $x_{2} \ldots$ be I.I.D random variables, with $\mathrm{E}\left[x_{i}\right]=\mu<\infty$, and $\operatorname{Var}\left[x_{i}\right]=\sigma^{2}<\infty$. Then,

$$
\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{\sum_{i=1}^{n} x_{i}-n \mu}{\sigma \sqrt{n}}
$$

which converges to $\mathrm{N}(0,1)$ as $n \rightarrow \infty$
Zoom lecture notes:
lemma:Suppose we have $x_{1}, x_{2} \ldots$ random variables with CDFs $F_{x_{i}}$ and MGFs $M_{x_{i}}$, for $\mathrm{i}=1,2,3 \ldots$ We have x with CDF F_{x} and MGF M_{x}. If

$$
\lim _{n \rightarrow \infty} M_{x_{i}}(t)=M_{x}(t)
$$

for all t, then

$$
\lim _{n \rightarrow \infty} F_{x_{n}}(t)=F_{x}(t)
$$

for all t at which F_{x} is continuous
Proof of Central Limit Theorem:
Assume $\mu=0, \sigma^{2}=1$
Let $M(t)=E\left[e^{t x_{i}}\right]$, then

$$
E\left[e^{\frac{t x_{i}}{\sqrt{n}}}\right]=M\left(\frac{t}{\sqrt{n}}\right)
$$

Note:(if $\mu=0, \sigma^{2}=1$, then

$$
\left.\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}}{\frac{1}{\sqrt{n}}}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i}\right)
$$

furthermore,

$$
E\left[e^{t \sum_{i=1}^{n} \frac{x_{i}}{\sqrt{n}}}\right]=\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}
$$

If we set $L(t)=\log (M(t))$

$$
\begin{aligned}
& \mathrm{L}(0)=\log (M(0))=\log (1)=0 \\
& L^{\prime}(t)=\frac{1}{M(t)} M^{\prime}(t) \\
& \begin{aligned}
L^{\prime}(0)=\frac{M^{\prime}(0)}{M(0)}=M^{\prime}(0) & =E\left[x_{i}\right]=0 \\
L^{\prime \prime}(t) & =\frac{M(t) M "(t)-M^{\prime}(t) M^{\prime}(t)}{M(t)^{2}} \\
& =\frac{M(t) M "(t)-\left(M^{\prime}(t)\right)^{2}}{M(t)^{2}} \\
L(0) & =\frac{M(0) M "(0)-\left(M^{\prime}(0)\right)^{2}}{M(0)^{2}} \\
& =\frac{E\left[x^{2}\right]-0}{1}=E\left[x^{2}\right]=1
\end{aligned}
\end{aligned}
$$

To prove CLT, we can just show $\lim _{n \rightarrow \infty} n \log \left(M\left(\frac{t}{\sqrt{n}}\right)\right)=\frac{t^{2}}{2}$ and $n \log \left(M\left(\frac{t}{\sqrt{n}}\right)\right.$ is just $n L\left(\frac{t}{\sqrt{n}}\right)$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} n L\left(\frac{t}{\sqrt{n}}\right)=\lim _{n \rightarrow \infty} \frac{L\left(\frac{t}{\sqrt{n}}\right)}{\frac{1}{n}} \\
=\lim _{n \rightarrow \infty} \frac{-L^{\prime}\left(\frac{t}{\sqrt{n}}\right) \frac{1}{2} \frac{t}{n^{\frac{3}{2}}}}{-\frac{1}{n^{2}}} \\
=\lim _{n \rightarrow \infty} \frac{t L^{\prime}\left(\frac{t}{\sqrt{n}}\right)}{\frac{2}{\sqrt{n}}} \\
=\lim _{n \rightarrow \infty} \frac{-t L^{\prime \prime}\left(\frac{t}{\sqrt{n}}\right) \frac{1}{2} \frac{1}{n^{\frac{3}{2}}} t}{-\frac{1}{n^{\frac{3}{2}}}} \\
=\lim _{n \rightarrow \infty} \frac{t^{2}}{2} L^{\prime \prime}\left(\frac{t}{\sqrt{n}}\right) \\
=\frac{t^{2}}{2}
\end{gathered}
$$

We can conclude

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \log \left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}=\frac{t^{2}}{n} \\
\left.\lim _{n \rightarrow \infty} M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}=e^{\frac{t^{2}}{2}}
\end{gathered}
$$

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i} \rightarrow N(0,1) \text { as } n \rightarrow \infty
$$

Another method:

$$
\lim _{n \rightarrow \infty}\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}=e^{\left(\frac{t^{2}}{2}\right)}
$$

Expand $M\left(\frac{t}{\sqrt{n}}\right)$ in a Taylor Series

$$
\begin{aligned}
& M\left(\frac{t}{\sqrt{n}}\right)=M(0)+ \frac{1}{\sqrt{n}} M^{\prime}(0) t+\frac{1}{n} M "(0) \frac{t^{2}}{2}+\ldots= \\
&=1+\frac{1}{n} \frac{t^{2}}{2}+\ldots \\
&\left(M\left(\frac{t}{\sqrt{n}}\right)\right)^{n}=\left(1+\frac{1}{n} \frac{t^{2}}{2}+\ldots\right)^{n}
\end{aligned}
$$

We also know that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{t}{n}\right)^{n}=e^{t}
$$

Example questions:

a) If 10 fair dice are rolled, find the approximate probability that the sum obtained is between 30 and 40, inclusive.

Solutions:
Let X_{i} denote the value of the ith die, $\mathrm{i}=1,2,3 . .10$. Since $E\left(X_{i}\right)=\frac{7}{2}$, $\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2}=\frac{35}{12}$ Central Limit Theorem yields

$$
P[29.5<=X<=40.5]=P\left[\frac{29.5-35}{\sqrt{\frac{350}{12}}}<=\frac{X-35}{\sqrt{\frac{350}{12}}}<=\frac{40.5-35}{\sqrt{\frac{350}{12}}}\right]=0.592
$$

b) Let $X_{i}=1,2, \ldots 10$, be independent random variables, each uniformly distributed over (0,1). Calculate an approximation to $P\left[\sum_{i=1}^{10} X_{i}>6\right]$

Solutions: Since $E\left[X_{i}\right]=\frac{1}{2}$ and $\operatorname{Var}\left(X_{i}\right)=\frac{1}{12}$, we have, by the central limit theorem,

$$
P\left[\sum_{i=1}^{10} X_{i}>6\right]=P\left[\frac{\sum_{i=1}^{10} X_{i}-5}{\sqrt{10\left(\frac{1}{12}\right)}}>\frac{6-5}{\sqrt{10\left(\frac{1}{12}\right)}}\right]
$$

