Strong Law of Large Numbers \& Other Inequalities 8.4-8.5

Ryan Horowitz

December 14th

1 Pre-Recorded Lecture \& Readings

1.1 Strong Law of Large Numbers

The Strong Law of Large Numbers (often abbreviated as SLLN) is as follows: let X_{1}, X_{2}, \ldots be a sequence of IID random variables with $E\left[X_{i}\right]=\mu<\infty$. Then, we know that $P\left[\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=\mu\right]=1$.

We will restate the Weak Law of Large Numbers (WLLN) and then discuss key differences between the WLLN and the SLLN.

The WLLN states that for any $\epsilon>0, \lim _{n \rightarrow \infty} P\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq \epsilon\right]=0$.
There are some key differences between the two statements. First of all, the WLLN states that for any specified large value $n^{*},\left(X_{1}+\ldots+X_{n^{*}}\right) / n^{*}$ is likely to be near μ. However, it does not say that $\left(X_{1}+\ldots+X_{n}\right) / n$ is bound to stay near μ for all values of n larger than n^{*}. The WLLN allows for the possibility of large values of $\left|\left(X_{1}+\ldots+X_{n}\right) / n-\mu\right|$ to occur infinitely often (though at infrequent intervals). The SLLN shows that this cannot occur. It implies that with probability 1 for any positive value ϵ that $\left|\left(X_{1}+\ldots+X_{n}\right) / n-\mu\right|$ will be greater than ϵ only a finite number of times.

Second of all, each law requires different additional assumptions for its proof. The WLLN requires that $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}<\infty$ while the SLLN requires that $E\left[X_{i}^{4}\right]<\infty$. Third of all, the SLLN is a "stronger" statement in that it implies the WLLN; however, the WLLN does not imply the SLLN.

The Strong Law of Large Numbers has some very important applications. One of which is as follows:

Suppose that a sequence of independent trials of some experiment is performed. Let E be a fixed event of the experiment, and denote by $P(E)$ the probability that E occurs on any particular trial. Letting $X_{i}=1$ if E occurs on the i th trial and $X_{i}=0$ if E does not occur on the $i t h$ trial, we have, by the SLLN, that with probability 1 ,

$$
\begin{equation*}
\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} \rightarrow E[X]=P(E) \tag{1}
\end{equation*}
$$

Since $\sum_{i=1}^{n} X_{i}$ is the number of times that the event E occurs in the first n trials, we may interpret equation (1) as stating that with probability 1 , the
limiting proportion of time that the event E occurs is just $P(E)$. This is a key fact that we assumed earlier in the course.

1.2 Other Inequalities

We are often interested in bounding a probability of the form $P[X-\mu \geq a]$, where $a>0$ when only the mean $\mu=E[X]$ and variance $\sigma^{2}=\operatorname{Var}(X)$ of a random variable X are known. This section provides some useful inequalities.

Trivially, since $X-\mu \geq a$, we see that $|X-\mu| \geq a$. We can now apply Chebyshev's Inequality and get that $P[X-\mu \geq a] \leq P[|X-\mu| \geq a] \leq \frac{\sigma^{2}}{a^{2}}$ for $a>0$.

1.3 One-Sided Chebyshev's Inequality

Proposition: If $E[X]=0, P[X \geq a] \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}} \leq \frac{\sigma^{2}}{a^{2}}$.
Proof. Let $b>0$ and note that $X \geq a$ is equivalent to $X+b \geq a+b$. We see that $P[X \geq a]=P[X+b \geq a+b] \leq P\left[(X+b)^{2} \geq(a+b)^{2}\right] \leq \frac{E\left[(X+b)^{2}\right]}{(a+b)^{2}}=\frac{\sigma^{2}+b^{2}}{(a+b)^{2}}$. Setting $b=\frac{\sigma^{2}}{a}$ (since this minimizes $\frac{\sigma^{2}+b^{2}}{(a+b)^{2}}$), we get that $P[X \geq a] \leq \frac{\sigma^{2}}{\sigma^{2}+a^{2}}$. QED

We see that this is a tighter bound than the original Chebyshev's Inequality, since $\frac{\sigma^{2}}{\sigma^{2}+a^{2}} \leq \frac{\sigma^{2}}{a^{2}}$. This provides us a better error bound.

1.4 Jensen's Inequality

Proposition: If f is a convex function $\left(\forall x, f^{\prime \prime}(x) \geq 0\right)$, then $E[f(x)] \geq f(E[X])$, assuming $E[f(x)]$ and $E[X]$ exist and are finite.

Proof. Expanding $f(x)$ in a Taylor series expansion about $\mu=E[X]$ yields $f(x)=f(\mu)+f^{\prime}(\mu)(x-\mu)+\frac{f^{\prime \prime}(\xi)(x-\mu)^{2}}{2}$, where ξ is some value between x and μ. Since $f^{\prime \prime}(\xi) \geq 0$, we obtain that $f(x) \geq f(\mu)+f^{\prime}(\mu)(x-\mu)$. Thus, $f(X) \geq f(\mu)+f^{\prime}(\mu)(X-\mu)$. Taking an expectation of both sides, we get that $E[f(X)] \geq E\left[f(\mu)+f^{\prime}(\mu)(X-\mu)\right]=f(\mu)+f^{\prime}(\mu) E[X-\mu]=f(E[X])$. A graphical interpretation can be helpful to understand Jensen's Inequality.

By graphing the curve $y=f(x)$ and the tangent line to $f(x)$ at $x=\mu$ $\left(y=f(\mu)+f^{\prime}(\mu)(x-\mu)\right)$, we can see that the curve $y=f(x)$ is always above or
equal to the tangent line. This is due to f being a convex function. Thus, we see that $f(x) \geq f(\mu)+f^{\prime}(\mu)(x-\mu)$. Replacing x with X and taking expectations on both sides yields Jensen's Inequality.

2 Synchronous Lecture

2.1 Recap

The Strong Law of Large Numbers (SLLN) states that for IID random variables X_{1}, X_{2}, \ldots with $E\left[X_{i}\right]=\mu<\infty$, then $P\left[\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=\mu\right]=1$.

The Weak Law of Large Number (WLLN) states that for any $\epsilon>0, \lim _{n \rightarrow \infty} P\left[\left\lvert\, \frac{1}{n} \sum_{i=1}^{n} X_{i}-\right.\right.$ $\mu \mid \geq \epsilon]=0$.

The key assumption for the proof of the WLLN is that $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}<\infty$.
The key assumption for the proof of the SLLN is that $E\left[X_{i}^{4}\right]=K<\infty$.

2.2 Proof of the Strong Law of Large Numbers

Proof. Without loss of generality, we can assume that $E\left[X_{i}\right]=0$. Let $S_{n}=$ $\sum_{i=1}^{n} X_{i}$.

We see that $E\left[S_{n}^{4}\right]=E\left[\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{4}\right]=E\left[\sum X_{i}^{4}+\sum X_{i}^{3} X_{j}+\right.$ $\left.\sum X_{i}^{2} X_{j}^{2}+\sum X_{i}^{2} X_{j} X_{k}+\sum X_{i} X_{j} X_{k} X_{l}\right]=E\left[\sum X_{i}^{4}+\sum_{i \neq j} X_{i}^{2} X_{j}^{2}\right]=n E\left[X_{i}^{4}\right]+$ $\binom{4}{2}\binom{n}{2} E\left[X_{1}^{2} X_{2}^{2}\right]$.

Since X_{1}^{2} and X_{2}^{2} are independent, then we get that $E\left[S_{n}^{4}\right]=n E\left[X_{1}^{4}\right]+$ $\binom{4}{2}\binom{n}{2} E\left[X_{1}^{2} X_{2}^{2}\right]=n K+\frac{6 n(n-1)}{2} E\left[X_{1}^{2}\right] E\left[X_{2}^{2}\right]=n K+\frac{6 n(n-1)}{2}\left(E\left[X_{1}^{2}\right]\right)^{2}$.

Now note that $\operatorname{Var}\left[X_{i}^{2}\right]=E\left[X_{i}^{4}\right]-\left(E\left[X_{i}^{2}\right]\right)^{2} \geq 0$. Thus, we know that $\left(E\left[X_{1}^{2}\right]\right)^{2}=E\left[X_{1}^{2}\right] E\left[X_{2}^{2}\right] \leq K=E\left[X_{1}^{4}\right]$.

Thus, we see that $E\left[S_{n}^{4}\right] \leq n K+3 n(n-1) K$.
Dividing both sides by n^{4}, we get that $E\left[\frac{S_{n}^{4}}{n^{4}}\right] \leq \frac{K}{n^{3}}+\frac{3\left(n^{2}-n\right) K}{n^{4}} \leq \frac{K}{n^{3}}+\frac{3 K}{n^{2}}-$ $\frac{3 K}{n^{3}} \leq \frac{K}{n^{3}}+\frac{3 K}{n^{2}}$. Since $E\left[\frac{S_{n}^{4}}{n^{4}}\right] \leq \frac{K}{n^{3}}+\frac{3 K}{n^{2}}$, then we know that $E\left[\sum_{n=1}^{\infty} \frac{S_{n}^{4}}{n^{4}}\right]=\sum_{n=1}^{\infty} E\left[\frac{S_{n}^{4}}{n^{4}}\right] \leq$ $\sum_{n=1}^{\infty}\left(\frac{K}{n^{3}}+\frac{3 K}{n^{2}}\right)<\infty$.

Hence, we see that $\sum_{n=1}^{\infty} \frac{S_{n}^{4}}{n^{4}}<\infty$ with probability 1.
Therefore, with probability 1 , we know that $\lim _{n \rightarrow \infty} \frac{S_{n}^{4}}{n^{4}}=0$. And therefore, with probability $1, \lim _{n \rightarrow \infty} \frac{S_{n}}{n}=0$. QED

3 Additional Examples

3.1 Example 5a

Problem: If the number of items produced in a factory during a week is a random variable with mean 100 and variance 400 , compute an upper bound on the probability that this week's production will be at least 120 .

Solution. We know that $\mu=100$ and $\sigma^{2}=400$. It follows from the one-sided Chebyshev Inequality that $P\{X \geq 120\}=P\{X-100 \geq 20\} \leq \frac{400}{400+20^{2}}=\frac{1}{2}$.

Hence, the probability that this week's production will be 120 or more is at most $\frac{1}{2}$.

If we attempted to obtain a bound by applying Markov's inequality, then we would have obtained $P\{X \geq 120\} \leq \frac{E(X)}{120}=\frac{5}{6}$, which is a far weaker bound than the preceding one.

3.2 Example 5f

An investor is faced with the following choices: Either she can invest all of her money in a risky proposition that would lead to a random return X that has mean m, or she can put the money into a risk-free venture that will lead to a return of m with probability 1 . What decision will she make if her decision will be made on the basis of maximizing the expected value of $u(R)$, where R is her return and u is her utility function.

By Jensen's inequality, it follows that if u is a concave function, then $E[(u(X))] \leq$ $u(m)$, so the risk-free alternative is preferable, whereas if u is convex, then $E[u(X)] \geq u(m)$, so the risky investment alternative would be preferred.

