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1 Pre-Recorded Lecture & Readings

1.1 Strong Law of Large Numbers

The Strong Law of Large Numbers (often abbreviated as SLLN) is as follows:
let X1, X2, ... be a sequence of IID random variables with E[Xi] = µ < ∞.
Then, we know that P [limn→∞

1
n

∑n
i=1Xi = µ] = 1.

We will restate the Weak Law of Large Numbers (WLLN) and then discuss
key differences between the WLLN and the SLLN.

The WLLN states that for any ε > 0, limn→∞ P [| 1n
∑n
i=1Xi − µ| ≥ ε] = 0.

There are some key differences between the two statements. First of all, the
WLLN states that for any specified large value n∗, (X1 + ...+Xn∗)/n

∗ is likely
to be near µ. However, it does not say that (X1 + ...+Xn)/n is bound to stay
near µ for all values of n larger than n∗. The WLLN allows for the possibility
of large values of |(X1 + ... + Xn)/n − µ| to occur infinitely often (though at
infrequent intervals). The SLLN shows that this cannot occur. It implies that
with probability 1 for any positive value ε that |(X1 + ... + Xn)/n− µ| will be
greater than ε only a finite number of times.

Second of all, each law requires different additional assumptions for its proof.
The WLLN requires that V ar[Xi] = σ2 < ∞ while the SLLN requires that
E[X4

i ] <∞. Third of all, the SLLN is a “stronger” statement in that it implies
the WLLN; however, the WLLN does not imply the SLLN.

The Strong Law of Large Numbers has some very important applications.
One of which is as follows:

Suppose that a sequence of independent trials of some experiment is per-
formed. Let E be a fixed event of the experiment, and denote by P (E) the
probability that E occurs on any particular trial. Letting Xi = 1 if E occurs
on the ith trial and Xi = 0 if E does not occur on the ith trial, we have, by the
SLLN, that with probability 1,

X1 +X2 + ...+Xn

n
→ E[X] = P (E). (1)

Since
∑n
i=1Xi is the number of times that the event E occurs in the first n

trials, we may interpret equation (1) as stating that with probability 1, the
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limiting proportion of time that the event E occurs is just P (E). This is a key
fact that we assumed earlier in the course.

1.2 Other Inequalities

We are often interested in bounding a probability of the form P [X − µ ≥ a],
where a > 0 when only the mean µ = E[X] and variance σ2 = V ar(X) of a
random variable X are known. This section provides some useful inequalities.

Trivially, since X − µ ≥ a, we see that |X − µ| ≥ a. We can now apply

Chebyshev’s Inequality and get that P [X − µ ≥ a] ≤ P [|X − µ| ≥ a] ≤ σ2

a2 for
a > 0.

1.3 One-Sided Chebyshev’s Inequality

Proposition: If E[X] = 0, P [X ≥ a] ≤ σ2

σ2+a2 ≤
σ2

a2 .
Proof. Let b > 0 and note that X ≥ a is equivalent to X+ b ≥ a+ b. We see

that P [X ≥ a] = P [X+b ≥ a+b] ≤ P [(X+b)2 ≥ (a+b)2] ≤ E[(X+b)2]
(a+b)2 = σ2+b2

(a+b)2 .

Setting b = σ2

a (since this minimizes σ2+b2

(a+b)2 ), we get that P [X ≥ a] ≤ σ2

σ2+a2 .

QED
We see that this is a tighter bound than the original Chebyshev’s Inequality,

since σ2

σ2+a2 ≤
σ2

a2 . This provides us a better error bound.

1.4 Jensen’s Inequality

Proposition: If f is a convex function (∀x, f ′′(x) ≥ 0), then E[f(x)] ≥ f(E[X]),
assuming E[f(x)] and E[X] exist and are finite.

Proof. Expanding f(x) in a Taylor series expansion about µ = E[X] yields

f(x) = f(µ) + f ′(µ)(x − µ) + f ′′(ξ)(x−µ)2
2 , where ξ is some value between x

and µ. Since f ′′(ξ) ≥ 0, we obtain that f(x) ≥ f(µ) + f ′(µ)(x − µ). Thus,
f(X) ≥ f(µ) + f ′(µ)(X − µ). Taking an expectation of both sides, we get that
E[f(X)] ≥ E[f(µ) + f ′(µ)(X − µ)] = f(µ) + f ′(µ)E[X − µ] = f(E[X]). A
graphical interpretation can be helpful to understand Jensen’s Inequality.

By graphing the curve y = f(x) and the tangent line to f(x) at x = µ
(y = f(µ)+f ′(µ)(x−µ)), we can see that the curve y = f(x) is always above or
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equal to the tangent line. This is due to f being a convex function. Thus, we see
that f(x) ≥ f(µ) + f ′(µ)(x− µ). Replacing x with X and taking expectations
on both sides yields Jensen’s Inequality.

2 Synchronous Lecture

2.1 Recap

The Strong Law of Large Numbers (SLLN) states that for IID random variables
X1, X2, ... with E[Xi] = µ <∞, then P [limn→∞

1
n

∑n
i=1Xi = µ] = 1.

The Weak Law of Large Number (WLLN) states that for any ε > 0, limn→∞ P [| 1n
∑n
i=1Xi−

µ| ≥ ε] = 0.
The key assumption for the proof of the WLLN is that V ar[Xi] = σ2 <∞.
The key assumption for the proof of the SLLN is that E[X4

i ] = K <∞.

2.2 Proof of the Strong Law of Large Numbers

Proof. Without loss of generality, we can assume that E[Xi] = 0. Let Sn =∑n
i=1Xi.
We see that E[S4

n] = E[(X1 + X2 + ... + Xn)4] = E[
∑
X4
i +

∑
X3
iXj +∑

X2
iX

2
j +

∑
X2
iXjXk +

∑
XiXjXkXl] = E[

∑
X4
i +
∑
i 6=j X

2
iX

2
j ] = nE[X4

i ]+(
4
2

)(
n
2

)
E[X2

1X
2
2 ].

Since X2
1 and X2

2 are independent, then we get that E[S4
n] = nE[X4

1 ] +(
4
2

)(
n
2

)
E[X2

1X
2
2 ] = nK + 6n(n−1)

2 E[X2
1 ]E[X2

2 ] = nK + 6n(n−1)
2 (E[X2

1 ])2.
Now note that V ar[X2

i ] = E[X4
i ] − (E[X2

i ])2 ≥ 0. Thus, we know that
(E[X2

1 ])2 = E[X2
1 ]E[X2

2 ] ≤ K = E[X4
1 ].

Thus, we see that E[S4
n] ≤ nK + 3n(n− 1)K.

Dividing both sides by n4, we get that E[
S4
n

n4 ] ≤ K
n3 + 3(n2−n)K

n4 ≤ K
n3 + 3K

n2 −
3K
n3 ≤ K

n3 + 3K
n2 . Since E[

S4
n

n4 ] ≤ K
n3 + 3K

n2 , then we know that E[
∑∞
n=1

S4
n

n4 ] =
∑∞
n=1E[

S4
n

n4 ] ≤∑∞
n=1( Kn3 + 3K

n2 ) <∞.

Hence, we see that
∑∞
n=1

S4
n

n4 <∞ with probability 1.

Therefore, with probability 1, we know that limn→∞
S4
n

n4 = 0. And therefore,

with probability 1, limn→∞
Sn

n = 0. QED

3 Additional Examples

3.1 Example 5a

Problem: If the number of items produced in a factory during a week is a
random variable with mean 100 and variance 400, compute an upper bound on
the probability that this week’s production will be at least 120.

Solution. We know that µ = 100 and σ2 = 400. It follows from the one-sided
Chebyshev Inequality that P{X ≥ 120} = P{X − 100 ≥ 20} ≤ 400

400+202 = 1
2 .
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Hence, the probability that this week’s production will be 120 or more is at
most 1

2 .
If we attempted to obtain a bound by applying Markov’s inequality, then

we would have obtained P{X ≥ 120} ≤ E(X)
120 = 5

6 , which is a far weaker bound
than the preceding one.

3.2 Example 5f

An investor is faced with the following choices: Either she can invest all of her
money in a risky proposition that would lead to a random return X that has
mean m, or she can put the money into a risk-free venture that will lead to a
return of m with probability 1. What decision will she make if her decision will
be made on the basis of maximizing the expected value of u(R), where R is her
return and u is her utility function.

By Jensen’s inequality, it follows that if u is a concave function, then E[(u(X))] ≤
u(m), so the risk-free alternative is preferable, whereas if u is convex, then
E[u(X)] ≥ u(m), so the risky investment alternative would be preferred.
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