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1 Pre-Recorded Lecture & Readings

1.1 Strong Law of Large Numbers

The Strong Law of Large Numbers (often abbreviated as SLLN) is as follows:
let X, X5, ... be a sequence of IID random variables with F[X;] = p < oo.
Then, we know that Plim,, o £ Y0 | X; = p] = 1.

We will restate the Weak Law of Large Numbers (WLLN) and then discuss
key differences between the WLLN and the SLLN.

The WLLN states that for any € > 0, limy,_,o0 P[|2 37" | X; — p| > €] = 0.

There are some key differences between the two statements. First of all, the
WLLN states that for any specified large value n*, (X7 + ... + X,,»)/n* is likely
to be near . However, it does not say that (X; + ... + X,,)/n is bound to stay
near p for all values of n larger than n*. The WLLN allows for the possibility
of large values of |(X1 + ... + X,,)/n — p| to occur infinitely often (though at
infrequent intervals). The SLLN shows that this cannot occur. It implies that
with probability 1 for any positive value e that |(X1 + ... + X,,)/n — p| will be
greater than € only a finite number of times.

Second of all, each law requires different additional assumptions for its proof.
The WLLN requires that Var[X;] = 02 < oo while the SLLN requires that
E[X{#] < 0co. Third of all, the SLLN is a “stronger” statement in that it implies
the WLLN; however, the WLLN does not imply the SLLN.

The Strong Law of Large Numbers has some very important applications.
One of which is as follows:

Suppose that a sequence of independent trials of some experiment is per-
formed. Let E be a fixed event of the experiment, and denote by P(FE) the
probability that E occurs on any particular trial. Letting X; = 1 if F occurs
on the ith trial and X; = 0 if E does not occur on the ith trial, we have, by the
SLLN, that with probability 1,

Xi+Xo+...+ X,

. — E[X] = P(E). (1)

Since Y., X; is the number of times that the event E occurs in the first n
trials, we may interpret equation (1) as stating that with probability 1, the



limiting proportion of time that the event F occurs is just P(E). This is a key
fact that we assumed earlier in the course.

1.2 Other Inequalities

We are often interested in bounding a probability of the form P[X — u > al,
where a > 0 when only the mean y = E[X] and variance 02 = Var(X) of a
random variable X are known. This section provides some useful inequalities.

Trivially, since X — p > a, we see that |X — u| > a. We can now apply
Chebyshev’s Inequality and get that P[X — p > a] < P[|X — p| > a] < Z—z for
a > 0.

1.3 One-Sided Chebyshev’s Inequality

Proposition: If E[X] =0,P[X > a] < g <

o.2+a‘2 = g2

Proof. Let b > 0 and note that X > a is equivalent to X +b > a+b. We see

2 o24p2
that PIX > o] = PX+b > a-1] < PIOX+D2 > (a+0)?) < 0G0 = 22k,

Setting b = %2 (since this minimizes %), we get that P[X > a] <
QED
We see that this is a tighter bound than the original Chebyshev’s Inequality,

o2+a?”

. 2 . .
since < 2—2 This provides us a better error bound.
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1.4 Jensen’s Inequality

Proposition: If f is a convex function (Vz, f”(x) > 0), then E[f(x)] > f(F[X]),
assuming E[f(z)] and F[X] exist and are finite.

Proof. Expanding f(z) in a Taylor series expansion about p = E[X] yields
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fx) = flu) + ff(w)(z —pn) + M, where £ is some value between z
and p. Since f”(£) > 0, we obtain that f(x) > f(u) + f/(u)(x — p). Thus,
F(X) > f(p) + f(u)(X — p). Taking an expectation of both sides, we get that
BUF(X)] > Bl + F)(X — w)] = F(u) + F'WEX — ] = F(E[X]). A
graphical interpretation can be helpful to understand Jensen’s Inequality.
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By graphing the curve y = f(z) and the tangent line to f(z) at z = p
(y = f(u)+f(n)(x—p)), we can see that the curve y = f(z) is always above or




equal to the tangent line. This is due to f being a convex function. Thus, we see
that f(z) > f(u) + f'(1)(x — ). Replacing z with X and taking expectations
on both sides yields Jensen’s Inequality.

2 Synchronous Lecture

2.1 Recap

The Strong Law of Large Numbers (SLLN) states that for ITD random variables
X1, Xo, ... with E[Xz] = p <00, then P[hmn_,oo % Z?:l X; = ,u] = 1.

The Weak Law of Large Number (WLLN) states that for any € > 0, lim,, o0 P[|1 37 X;—
pul =€ =0.

The key assumption for the proof of the WLLN is that Var[X;] = 0% < co.

The key assumption for the proof of the SLLN is that F[X}] = K < cc.

2.2 Proof of the Strong Law of Large Numbers
Proof. Without loss of generality, we can assume that E[X;] = 0. Let S, =

S X

We see that E[S}] = E[(X1 + Xo+ ... + X;)Y = ED X+ Y X2X; +
MXIXF XXXy + XX X Xy) = B[ XY, XPXE] = nE[X ]+
(2) (5) EIXEX3).

Since X7 and XZ are independent, then we get that E[S}] = nE[X{] +
() (3) EIXTX3) = ni + 20D B(XFB[XE] = nk + 5= (B[XT])*.

Now note that Var[X?] = E[X}] — (E[X?])?> > 0. Thus, we know that
(E[X?))? = E[X?|E[X]] < K = E[X{].

Thus, we see that E[S?] < nK + 3n(n — 1)K

Dividing both sides by n*, we get that E[ } < K3 + M K 4 n—K
3K < fngr?’é(. SmceE[ ] < Ing?’Irf,thenweknowthatE[Z "] S [ } <

P 103 5 + ) < 0.
Hence, we see that > >

Therefore, with probability 1, we know that lim,, . i—i = 0. And therefore,
with probability 1, lim, o %2 = 0. QED

4
< oo with probability 1
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3 Additional Examples

3.1 Example 5a

Problem: 1If the number of items produced in a factory during a week is a
random variable with mean 100 and variance 400, compute an upper bound on
the probability that this week’s production will be at least 120.

Solution. We know that ¢ = 100 and o2 = 400. It follows from the one-sided

Chebyshev Inequality that P{X > 120} = P{X — 100 > 20} < ﬁ = %



Hence, the probability that this week’s production will be 120 or more is at

most 1.
2
If we attempted to obtain a bound by applying Markov’s inequality, then
we would have obtained P{X > 120} < %)é) = %, which is a far weaker bound

than the preceding one.

3.2 Example 5f

An investor is faced with the following choices: Either she can invest all of her
money in a risky proposition that would lead to a random return X that has
mean m, or she can put the money into a risk-free venture that will lead to a
return of m with probability 1. What decision will she make if her decision will

be made on the basis of maximizing the expected value of u(R), where R is her
return and v is her utility function.

By Jensen’s inequality, it follows that if « is a concave function, then E[(u(X))] <

u(m), so the risk-free alternative is preferable, whereas if w is convex, then
Elu(X)] > u(m), so the risky investment alternative would be preferred.



