Homework 10

Due: 2:00pm April 21, 2016

Each problem is worth 10 points.

Exercise 1: Which of the following multistep methods are convergent? You will not receive any credit unless you justify your answer:

1. $y_{k}-y_{k-2}=h\left(f_{k}-3 f_{k-1}+4 f_{k-2}\right)$
2. $y_{k}-2 y_{k-1}+y_{k-2}=h\left(f_{k}-f_{k-1}\right)$
3. $y_{k}-y_{k-1}-y_{k-2}=h\left(f_{k}-f_{k-1}\right)$

Exercise 2: Consider the system of equations

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1000 & 1 \\
0 & -1 / 10
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]} \\
x(0)=1, \quad y(0)=2 .
\end{gathered}
$$

Using the fourth-order Runge-Kutta method, what is the maximum step-size h allowed for stability reasons?

Exercise 3: Consider the 10×10 matrix A:

$$
\mathbf{A}=\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -1 \\
& & & -1 & 2
\end{array}\right]
$$

Where are the eigenvalues of this matrix located?

