Homework 3

Due: 2:00pm Feb. 18th, 2016

Each problem is worth 10 points.
Exercise 1 [Floating point arithmetic]: Let a and b be two positive floating-point numbers with the same exponent. Explain why the computed difference $a \ominus b$ (the IEEE rounded difference) is always exact using IEEE arithmetic.

Exercise 2 [Conditioning, stability]: Let a, b, c be floating point numbers. The solution to

$$
a x^{2}+b x+c=0
$$

is given by the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Assume $a \sim \mathcal{O}(1)$ and $b \sim \mathcal{O}(1)$. If a, b, c are accurate to full relative double precision, but $c \approx 0$, what goes wrong, if anything, in calculating the roots x_{+}and x_{-}? (Think relative precision).

$$
x_{+}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad x_{-}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

Is there another method that can avoid any problems? Can the quadratic formula be fixed?

Exercise 3 [LU factorization]: Write a function in Matlab that will compute the $P L U$-decomposition of an $n \times n$ matrix A using partial pivoting:

$$
A=P L U
$$

The calling sequence of the function should be:

```
[pmat,lmat,umat] = partial_pivot_lu(amat)
```

Turn in your code, along with a printout of the output of the following Matlab commands in short e format (see Matlab preferences):

```
rng(7, 'twister')
n = 6;
amat = randn(n);
[pmat,lmat,umat] = partial_pivot_lu(amat)
```

You must also email me (oneil@nyu. edu) a copy of your code that I can execute.

- continued -

Exercise 4 [Complexity]: Estimate the number of operations required for Gaussian elimination ($L U-$ factorization) with partial pivoting on an $n \times n$ matrix with half-bandwidth m (see Section 7.2.4 in the text for more info). You can use the fact that the half-bandwidth of the U factor is at most doubled by using partial pivoting.

