Homework 4

Due: 2:00pm Feb. 25th, 2016

Each problem is worth 10 points.
Exercise 1 [Conditioning]: Compute the condition number of the matrix A :

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 9
\end{array}\right]
$$

Note: Do NOT just turn in a number that you computed in Matlab without deriving how it was computed.

Exercise 2 [Cholesky decomposition]: The Cholesky decomposition is a special case of an $L U$ decomposition for a symmetric positive definite (SPD) matrix. For an SPD matrix A, the Cholesky decomposition is:

$$
A=L L^{T}
$$

where L is lower-triangular. Write a routine in Matlab to compute the Cholesky factorization (without pivoting) of the $n \times n$ matrix A_{n} :

$$
A_{n}=\left[\begin{array}{ccccc}
n & n-1 & n-2 & \cdots & 1 \\
n-1 & n & n-1 & \cdots & 2 \\
n-2 & n-1 & n & \cdots & 3 \\
\vdots & & & \ddots & \vdots \\
1 & \cdots & \cdots & \cdots & n
\end{array}\right]
$$

The calling sequence of the function should be:

```
[lmat] = mycholesky(n)
```

Turn in your code, along with a printout of the output of the following MATLAB commands in short e format (see Matlab preferences):

```
n = 6;
[lmat] = mycholesky(n)
```

You must also email me (oneil@nyu.edu) a copy of your code that I can execute.

- continued -

Exercise 3 [Eigenvalues and eigenvectors]: Let A be an $n \times n$ symmetric matrix with real-valued entries and n distinct non-zero eigenvalues. Prove that A has n linearly independent, orthogonal eigenvectors and that all the eigenvalues are real (i.e. not complex).

Exercise 4 [Norms]: Show that for all vectors \boldsymbol{u} of length n :

1. $\|\boldsymbol{u}\|_{\infty} \leq\|\boldsymbol{u}\|_{2} \leq \sqrt{n}\|\boldsymbol{u}\|_{\infty}$
2. $\|\boldsymbol{u}\|_{2} \leq\|\boldsymbol{u}\|_{1}$
3. $\|\boldsymbol{u}\|_{1} \leq n\|\boldsymbol{u}\|_{\infty}$
