Homework 6

Due: 2:00pm Mar. 10rd, 2016

Each problem is worth 10 points.
Exercise 1 [Piecewise spline]: Determine the piecewise polynomial functions $p_{1}(x)$ and $p_{2}(x)$ which define the function $p(x)$:

$$
p(x)= \begin{cases}p_{1}(x) & \text { for } 0 \leq x \leq 1 \\ p_{2}(x) & \text { for } 1 \leq x \leq 2\end{cases}
$$

such that:

- $p_{1}(x)$ is linear,
- $p_{2}(x)$ is quadratic,
- $p(x)$ and $p^{\prime}(x)$ are continuous at $x=1$,
- $p(0)=1, p(1)=-1$, and $p(2)=0$.

Exercise 2 [Approximation error]: Using Taylor's Theorem, derive the error term for the approximation:

$$
f^{\prime}(x) \approx \frac{-3 f(x)+4 f(x+h)-f(x+2 h)}{2 h}
$$

What is the round-off error in the above finite difference? (You can ignore the error in computing x, $x+h$, and $x+2 h$.

Exercise 3 [Optimal forward difference]: Consider the following finite difference expression for $f^{\prime \prime}$:

$$
f^{\prime \prime}(x) \approx A f(x)+B f(x+h)+C f(x+2 h)
$$

Use Taylor's Theorem to determine A, B, and C that give the maximal order of accuracy, and determine what this order is.

Exercise 4 [Spectral differentiation]: The Chebyshev polynomials have indefinite integrals given by:

$$
\int T_{n}(x) d x=\frac{1}{2}\left(\frac{T_{n+1}(x)}{n+1}-\frac{T_{n-1}(x)}{n-1}\right)+C, \quad n=2,3, \ldots
$$

where C is an arbitrary constant. Indefinite integrals of T_{0} and T_{1} can be computed directly.

- continued -
(a) Suppose that

$$
p(x)=\sum_{n=0}^{N} a_{n} T_{n}(x) .
$$

Determine coefficients A_{0}, \ldots, A_{N+1} such that

$$
\int p(x) d x=\sum_{n=0}^{N+1} A_{n} T_{n}(x)
$$

e.g., express A_{0}, \ldots, A_{n+1} in terms of a_{0}, \ldots, a_{n}. The coefficient A_{0} can be arbitrary to account for the arbitrary constant of integration.
(b) Now suppose that

$$
q(x)=\sum_{n=0}^{N+1} A_{n} T_{n}(x)
$$

Reverse the process in part (a) to determine coefficients a_{0}, \ldots, a_{n} (in terms of $A_{0}, \ldots A_{N+1}$) such that

$$
q^{\prime}(x)=\sum_{n=0}^{N} a_{n} T_{n}(x)
$$

