Homework 7

Due: 2:00pm Mar. 31st, 2016

Each problem is worth 10 points.

Exercise 1 [Richardson extrapolation]: Using the finite difference approximation

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

perform Richardson extrapolation using $h=0.2,0.1$, and 0.05 for the function $f(x)=\sin x$ at $x=\pi / 6$. That is to say, use the results of Richardson extrapolation for $h=0.2 \rightarrow 0.1$ with the result of Richardson extrapolation for $h=0.1 \rightarrow 0.05$ to perform one additional Richardson extrapolation. Make a table of the results. What order of approximation do you obtain after these two steps of Richardson?

Exercise 2 [Newton-Cotes] Derive the Newton-Cotes quadrature rule for

$$
\int_{0}^{1} f(x) d x
$$

using the nodes $x=0,1 / 3,2 / 3$, and 1 .

Exercise 3: Find the formula of the form

$$
\int_{0}^{1} f(x) d x \approx w_{0} f(0)+w_{1} f(1)
$$

that is exact for all functions of the form

$$
f(x)=a e^{x}+b \cos \left(\frac{\pi x}{2}\right)
$$

with a, b constants.

Exercise 4 [Mid-point rule]: The mid-point quadrature rule is given by:

$$
\int_{a}^{b} f(x) d x \approx(b-a) f\left(\frac{a+b}{2}\right)
$$

(a) Show that this quadrature rule is exact if f is a constant or linear function.
(b) What is the approximation error in the mid-point rule above?

