Homework 8

Due: 2:00pm April 7, 2016

Each problem is worth 10 points.

Exercise 1 : Solve the following initial value problems analytically:

1. $y^{\prime}=t^{3}, y(0)=0$
2. $y^{\prime}=2 y, y(1)=3$
3. $y^{\prime}=a y+b, y(0)=y_{0}$ (Assume that a and b are scalars. Hint: Multiply by the integrating factor $e^{-t a}$ and integrate from 0 to T)

Exercise 2: Verify that the function $y(t)=t^{3 / 2}$ solve the initial value problem

$$
y^{\prime}=\frac{3}{2} y^{1 / 3}, \quad y(0)=0
$$

Apply Euler's method to this problem and explain why the numerical approximation differs from the solution $t^{3 / 2}$.

Exercise 3: Write down the result of applying one step of Euler's method to the initial value problem $y^{\prime}=(t+1) e^{-y}, y(0)=0$, using step size $h=0.1$. Do the same for the midpoint method and for Heun's method.

Exercise 4: Write down the result of applying one step of Euler's method to the predator-prey equations:

$$
\begin{aligned}
& R^{\prime}(t)=(2-F(t)) R(t) \\
& F^{\prime}(t)=(R(t)-2) F(t)
\end{aligned}
$$

starting with $R(0)=2$ and $F(0)=1$ and using step size $h=0.1$. Do the same for the midpoint method and for Heun's method.

