Feb 18, 2020
Numerical analysis
More technical matters: Flouting -pt. arithmetic

What guarantees the "correct" solution of any numerical algorithm?
(1) Bug-free code (obviously)
(1) Convergent numerical algorithm (in infinite-precision)
(3) "Stable" compututains (recall $\cos \left(2 \pi 10^{20}\right)$?)
(1) \& (2) are "human" problems
(3) is a "compter" problem

Intel Flaw incorrectly computing quotients
$\Rightarrow \$ 420$ milling
$\Rightarrow \$ 420 \mathrm{~m}$ ilion dollars
[Arris 5 rocket - programmes didnit allocate enough moony] \Rightarrow all arrays at least 10000 long!

The question you should be asking yourself is:
How do computers store numbers?
\rightarrow Binary / based arithmetic

$$
\begin{aligned}
\text { Decimal: } 10= & 1.10+0.1 \\
\text { Binam: } 1010= & 1.2^{3}+0.2^{2}+1.2^{1}+0.2^{0} \\
& \text { Page } 1
\end{aligned}
$$

Binum addition:

$$
\begin{aligned}
23 & =16+7 \\
& =16+4+2+1 \\
& =2^{4}+2^{2}+2^{1}+2^{0} \\
& =(10111)_{2} \\
17 & =16+1 \\
& =2^{4}+2^{0} \\
& =(10001)_{2}
\end{aligned}
$$

Braining decominls:
$\frac{7}{2}=3.5$ in decimal notation
In binary notation: $3=(11)_{2}$

$$
\begin{aligned}
& .5=\frac{(0.1)_{2}}{\tau_{\frac{1}{2}}^{2}} \\
& .25=\frac{1}{4}=\frac{(0.01)_{2}}{\frac{L_{1}^{2}}{2^{2}}}
\end{aligned}
$$

Each 0 or 1 is a "bit".

Fixed representation: $x x x x, x x x x$ bit fixed
Not how computes store numbers
Page 2

Flouting point representation (like scientific notation)

$$
\pm m \times 2^{E}, m \in[1,2]
$$

Example: $\quad 23=(10111)_{2}$

$$
=\left(1.0111 \times 2^{4}\right) \quad \text { Even g multiplication by }
$$ 2 moves the decimal ovarby one.

$$
\frac{1}{4}=0.001=1.0 \times 2^{-3}
$$

How many bits does a computer use?

$$
\text { single precision "word": } 32 \text { bits } \begin{aligned}
& 1 \text { bit for }
\end{aligned}
$$

1 bit for sign
8 bits for exponent
23 bits for mantissa (significand)

Ex: $5.5=1.011 \times 2^{2}$

$$
=(\sum_{1}|\underbrace{E=00000010}_{\text {sign }}| \underbrace{1011 \ldots 0}_{\text {mantissa }})
$$

always 1 (can improve, except for 0) hidentrit rep.

Non-reponting tretirats are "flouting point numbers" binary

What is the precision of this?
Machine precision is the distance between
I and the next f_{p} number. In thise
case,

$$
\begin{aligned}
& 1=(0|E=0| 1.0 \ldots 0) \\
& 1+2^{-23}=(0|E=0| 1.0 \cdots 01) \\
& L \approx 1.2 \times 10^{-7}
\end{aligned}
$$

