Numerical Analysis Mar 12,2020
When solving $A \vec{x}=\vec{b}$, the absolution condition number:

$$
\begin{aligned}
& \vec{x}=A^{-1} \vec{b} \\
& \left\|\vec{x}-\vec{x}^{\prime}\right\| \leqslant\left\|A^{-1}\right\| \cdot\left\|\vec{b}-\vec{b}^{\prime}\right\|
\end{aligned}
$$

Relative condition number:

$$
\frac{\left\|\vec{x}-\vec{x}^{\prime}\right\|}{\|\vec{x}\|} \leq \underbrace{\|A\| \cdot\left\|A^{-1}\right\|}_{K(A)} \cdot \frac{\left\|\vec{b}-\vec{b}^{\prime}\right\|}{\|\vec{b}\|}
$$

The most important case: $\|\cdot\|=\|\cdot\|_{2}$.
$\Rightarrow K_{2}(A)=\sqrt{\frac{\lambda_{1}}{\lambda_{n}}}$ when λ_{1} is langut eiginerlu of λ_{n} is the smallest erigenalu.

Write A in sui form:
$A=U \sum^{v} V^{\top}$ dinjinal, with entries $\sigma, \geq \ldots \geq \sigma_{n} \geqslant 0$
are orthogonal matrices
Then $A^{\top} A=V \underline{\Sigma}^{\top} \underbrace{U^{\top} U} \leq V^{\top}$

$$
=V \underbrace{}_{q} \underbrace{2} V^{T^{I}} \text { eigenvalues of } A^{\top} A \Rightarrow \sigma_{1}^{2} \geq \sigma_{2}^{2}>\ldots \geqslant \sigma_{n}^{2}
$$

egenvectus of $A^{\top} A$
So therefor: $\quad K_{2}(A)=\sqrt{\frac{\lambda_{1}}{\lambda_{n}}}=\sqrt{\frac{\sigma_{1}^{2}}{\sigma_{n}^{2}}}=\frac{\sigma_{1}}{\sigma_{n}}$

Consequences of $K_{2}(A)$:

$$
\frac{\left\|\vec{x}-\vec{x}^{\prime}\right\|}{\|\vec{x}\|} \leq K_{2}(A) \frac{\left\|\vec{b}-\vec{b}^{\prime}\right\|}{\|\vec{b}\|}
$$

True problem is $A \vec{x}=\vec{b}$
Imagine that \vec{b}^{\prime} is the flouting point representation of \vec{b}, meaning $\vec{b}^{\prime}=\operatorname{round}(\vec{b})$.

If machine precision is ϵ_{1} then $\frac{\left\|\vec{b}-\vec{b}^{\prime}\right\|}{\|\vec{b}\|} \sim \theta(\hat{\epsilon})$.

$$
\Rightarrow \frac{\left\|\vec{x}-\vec{x}^{\prime}\right\|}{\|\vec{x}\|} \leq K_{2}(A) \cdot \epsilon
$$

\Rightarrow The number of significurt digits lost in solving

$$
A \vec{x}=\vec{b} \quad \text { is } \quad \sim-\log _{10}\left(K_{2}(A) \cdot \epsilon\right)
$$

Ex: Double precision flouting point $\Rightarrow t \sim 10^{-16}$
Compute $K_{2}=10^{10}$

$$
\Rightarrow \quad \frac{\left\|\vec{x}-\vec{x}^{\prime}\right\|}{\left\|\vec{x}^{\|}\right\|} \leq \epsilon \cdot K_{2}=10^{-6}
$$

This dosn't mean that $\frac{\left\|\vec{x}-\vec{x}^{\prime}\right\|}{\|\vec{x}\|}$ cannot be smaller, but it puts a bound on how bad it can be.

Least Squares
Two canonical problems in linear algebra:
(1) Solve $A \vec{x}=\vec{b} \Rightarrow A$ is a square $n \times n$ matrix.
(2) Find "the best" solution to a system $A \vec{x}=\vec{b}$ when A is an $m \times n$ matrix.

Ex:

One varsui of "the best" solution is the least syvure solutiva:
Least square: For $A \in \mathbb{R}^{m m}$, with $m>n$, find \vec{x} such that $\|A \vec{x}-\vec{b}\|_{2}$ is as small as possible.

T The fact that this is the 2 -nom is important
Ex: $A \in \mathbb{R}^{3 \times 2}$
Geometrically
 $\min \|A \dot{x}-\bar{b}\|_{2}$ minimize the distance betwan \vec{b} and \vec{A}.
column space of A
$\operatorname{col}(A)$
We also han that

$$
\|A \vec{x}-\vec{b}\|_{2}^{2}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)^{2}=f(\vec{x})
$$

If all you knew was calculus, then you could sole this by find the solution to $\left.\frac{\partial f}{\partial x_{1}}=0\right\}$ Fuidiry a zee of f^{\prime} $\left.\frac{\partial f}{\partial x_{0}}-0\right\}$

Let $\vec{r}=\vec{b}-A \vec{x}=$ residual vector.
$\Rightarrow\|\vec{r}\|=\operatorname{distan} \pi$ from $\operatorname{col}(A)$ to \vec{b}.
If \vec{x} is the least spas solution, then $\vec{r} \perp^{2} \operatorname{col} A$, in particular, $A^{\top} \vec{r}=\overrightarrow{0}$.

$$
\begin{aligned}
\Rightarrow A^{\top} \vec{r}=\overrightarrow{0} & =A^{\top}(\vec{b}-A \vec{x}) \\
& =A^{\top} \vec{b}-A^{\top} A \vec{x}
\end{aligned}
$$

\Rightarrow The least squares solution \vec{x} solves $A^{\top} A \vec{x}=A^{\top} \hat{b}$.

From a numerial point of view, how best to fired \vec{x} to min $\|A \vec{x}-\vec{b}\|_{2}$?

Options: © Solve the normal equation:

$$
\bigoplus_{m \times n}^{A^{\top} A} \vec{x}=A^{+} \stackrel{\rightharpoonup}{b}
$$

Drawback: Solving $A^{\top} A \vec{x}=A^{\top} \stackrel{\rightharpoonup}{b}$ has a condition number that is the span of $A \vec{x}=\tilde{b}$.

Ex: If A is $m \times n$ with rank n, then

$$
\begin{array}{ll}
A=U_{m \times n} S_{n \times n} V_{n \times n}^{\top} & \Rightarrow \operatorname{cond}(A)=\frac{\sigma_{1}}{\sigma_{n}} \\
A^{\top} A=V S^{2} V^{\top} & \Rightarrow \operatorname{cond}\left(A^{\top} A\right)=\frac{\sigma_{1}^{2}}{\sigma_{n}^{2}}
\end{array}
$$

So if $\operatorname{cond} / A \mid=10^{4}$, than $\operatorname{cond}\left(A^{\top} A\right)=10^{8}$.

Option (2) Use calculus to min $\|A \vec{x}-\vec{b}\|$

Goal: min $\|A \vec{x}-\vec{b}\|$ wither solving the normal equatuans.

Idea: Construct a liner system that is consistent (ice. has a solution), without computing $A^{\top} A$.

Instead of solving $A \vec{x}=\vec{b}$, (which has no solution), solve $A \vec{x}=\vec{b}^{\prime} \longleftarrow \vec{b}^{\prime}=$ orthogonal projection of \vec{b}

$$
A \vec{Y}=\operatorname{prop}_{a, J_{A}} \vec{b}=\vec{b}^{\prime}
$$ ont the column space of A.

How do we cupule prog coll \vec{b} ?
How do we compute a projection of one vector onto another?

In 2D.

The orthogonal prijecuten of \vec{y} onto \vec{x}_{1} is the component of \vec{y} pointing in the \vec{x}_{1} direction.

In 3D

proj$\underset{x}{\vec{y}}=$ the component of \vec{y} in the $\vec{x}_{1}-\vec{x}_{2}$ plane.

If $\left(\hat{x}_{1}, \hat{x}_{2}\right)=0$, (orthogonal), then \mid Gram Schmidt process.

$$
\operatorname{pro}_{x} \hat{y}^{y}=\left(\hat{y}, \hat{x}_{1}\right) \hat{x}_{1}+\left(\vec{y}, \hat{x}_{2}\right) \hat{x}_{2}
$$

So this suggests that we want to find an orthonormal basis for $\operatorname{col}(A), U=\operatorname{span}\left\{\hat{u}_{1}, \cdots, u_{n}\right\}$ and then project \vec{b} onto U, forming \vec{b}^{\prime}.

$$
\begin{aligned}
\vec{b}^{\prime} & =\left(\vec{b}, \hat{u}_{1}\right) \hat{u}_{1}+\left(\vec{b}, \hat{u}_{2}\right) \hat{u}_{2}+\ldots+\left(\vec{b}, \hat{u}_{n}\right) \vec{u}_{n} \\
& =\left(\hat{u}_{1} \hat{u}_{2} \cdots \hat{u}_{n}\right)\left(\begin{array}{c}
\left(\vec{b}, \hat{u}_{1}\right) \\
\left(\vec{b} \hat{\mu}_{2}\right) \\
\vdots \\
\left(\vec{b}, \hat{u}_{n}\right)
\end{array}\right) \\
& =\underbrace{\left(\hat{u}_{1} \hat{u}_{2} \ldots \hat{u}_{n}\right)}_{\tau}\left(\begin{array}{c}
\hat{u}_{1}^{\top} \\
\hat{u}_{2}^{\top} \\
\vdots \\
\hat{u}_{n}^{\top}
\end{array}\right) \stackrel{\rightharpoonup}{b} \\
& =U^{\top} \vec{b}
\end{aligned}
$$

orthogonal projection of \vec{b} out the cslumnspace of A
\Rightarrow The linear system $A \vec{x}=U U^{\top} \vec{b}$ is consistent.

