Numerical Analysis Mar (2, 2020

When solving
$$A \vec{x} = \vec{b}$$
, the absolution condition number:
 $\vec{x} = A^{-1}\vec{b}$
 $\|\vec{x} - \vec{x}'\| \leq \|A^{-1}\| \cdot \|\vec{b} - \vec{b}'\|$

Relative condition number:

$$\frac{\|\vec{x} - \vec{x}'\|}{\|\vec{x}\|} \in \frac{\|A\| \cdot \|\vec{A}'\|}{||\vec{k}||} \cdot \frac{\|\vec{b} - \vec{b}'\|}{\|\vec{b}\|}$$
The most important case: $\|\cdot\| = \|\cdot\|_2$.
 $=7 \quad 1/(A) = \int \frac{X_1}{X_0}$ where X_1 is largest eigenvalued
 ATA
 $An \in \text{the smallest eigenvalue.}$

Write A in SUD form:
A=
$$U \leq V^{T}$$
 digin l, with entries $\sigma_{1,2...} \geq \sigma_{n} \geq 0$
A= $U \leq V^{T}$ digin l matrix
Are orthogonal matrix
Then $(A^{T}A) = V \leq^{T} U^{T}U \leq V^{T}$
 $= V \leq^{2} V^{T}$ eigenvalues of $A^{T}A = 7$ $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq ... \geq \sigma_{n}^{2}$
eigenvections of $A^{T}A$

So therefor:
$$|\zeta_2(A) = \int \frac{\lambda_1}{\lambda_n} = \int \frac{\sigma_1^2}{\sigma_n^2} = \frac{\sigma_1}{\sigma_n}$$

Consequences of
$$K_{2}(A)$$
:

$$\frac{\|\vec{x} \cdot \vec{x}'\|}{\|\vec{x}\|} \leq |K_{2}(A)| \frac{\|\vec{b} \cdot \vec{b}'\|}{\|\vec{b}\|}$$
True problem is $A\vec{x} \cdot \vec{b}$
True problem is $A\vec{x} \cdot \vec{b}$
True problem is $A\vec{x} \cdot \vec{b}$
The machine precision is c , then $\|\vec{b} - \vec{b}'\| \sim O(c)$.
The machine precision is c , then $\|\vec{b} - \vec{b}'\| \sim O(c)$.

$$\frac{\|\vec{x} \cdot \vec{x}'\|}{\|\vec{x}\|} \leq K_{2}(A) \cdot c$$

$$\Rightarrow The machine $dr significant digits lost is solving $A\vec{x} \cdot \vec{b}$ is $\sim -\log_{10}(|K_{2}(A)| \cdot c)$.
Ex: Double precision flowing point $\Rightarrow c \sim 10^{16}$
Complet $K_{2} = 10^{10}$

$$\Rightarrow \frac{\|\vec{x} \cdot \vec{x}'\|}{\|\vec{x}\|} \leq c \cdot K_{2} = 10^{10}$$
This definit mean that $\frac{\|\vec{x} - \vec{x}'\|}{\|\vec{x}\|}$ cannot be smaller, but it puts a bound on how bod it can be.$$$

Leust Squares

Two canonizal problems in livin algebra:
() Solve
$$A\vec{x} : \vec{b} = 7$$
 A is a square non matrix.
(2) Find "the best" solution to a system $A\vec{x} = \vec{b}$ when
 A is an more matrix.
 $\vec{Ex}:$
 $M = \vec{b} = \vec{b} = 1$ In general, not solvable became
 $M = \vec{b} = \vec{b} = 1$ More $M = 1$ and $M = 1$
One version of "the best" solution is the least square solution:

Least squares: For
$$A \in \mathbb{R}^{2}$$
, with $m > n$, find \overline{x} such
that $\|A\overline{x} - \overline{b}\|_{2}$ is as small as possible.
The fact that this is the 2-norm is important
 \overline{Ex} : $A \in \mathbb{R}^{3\times 2}$
 $\overline{Grometricully}$
 $\overline{Grometricully}$
 \overline{Ax}
 \overline{Ax}
 \overline{Colomn} space of A
 $col(A)$

We also have that

$$\|A\vec{x} - \vec{b}\|_{2}^{2} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} - b_{i}\right)^{2} = f(\vec{x})$$

If all you knew was calculus, then you could solve this by find the solution to $\frac{\partial f}{\partial x_1} = 0$? Finding a zero of f' [3] $\frac{\partial f}{\partial x_2} = 0$? Finding a zero of f' [3]

Let
$$\vec{r} = \vec{b} - A\vec{x} = residuel vector.$$

$$\Rightarrow \||\vec{r}|| = distance from col(A) to \vec{b} . perpendictor.

$$If \vec{x} \text{ is the least space solution, then } \vec{r} \perp colA, ,$$

$$in particular, AT\vec{r} = \vec{o} -$$

$$\Rightarrow AT\vec{r} = \vec{o} = AT(\vec{b} - A\vec{x})$$

$$= AT\vec{b} - AA\vec{x}$$

$$\Rightarrow The least space solution \vec{x} solves $\overrightarrow{ATAx} = \overrightarrow{N}\vec{b}$.
There least space solution \vec{x} solves $\overrightarrow{ATAx} = \overrightarrow{N}\vec{b}$.
There least space solution \vec{x} solves $\overrightarrow{ATAx} = \overrightarrow{N}\vec{b}$.
There least space solution \vec{x} solves $\overrightarrow{ATAx} = \overrightarrow{N}\vec{b}$.
There equations
heat to fiel \vec{x} to min $\||A\vec{x} - \vec{b}||_{2}$?
Options: (0) Solve the normal equations:
 $ATA\vec{x} = AT\vec{b}$
 1
maxa
 $Drawbach: Solving $\overrightarrow{ATAx} = AT\vec{b}$ has a condition number
that to the space of $A\vec{x} = \vec{b}$.
 $\vec{Ex}: If A to max with rank on , then
 $A: U_{max} S_{max} V_{max}^{T} \Rightarrow cond(A) = \frac{\sigma_{1}}{\sigma_{1}}$
 $\vec{ATA} = V S^{2} VT \Rightarrow cond(ATA) = 0^{2}$.$$$$$$

Optón	2	Vsi	(al eulus	to	min	AZ-Z	
-------	---	-----	-----------	----	-----	------	--

Gal: min IIAX-Toll without solving the normal equations.
Gal: min IIAX-Toll without solving the normal equations.
Idea: Consider a liver system
Hut is consistent (c.e. has a solution),
without computing ATA.
Instead of solving AX = D, (which has us solution),
solve
$$AX = D' = D' = D'$$
 only the column pojection of D
 $AX = projection = D'$
How do we compute projection of one vetor onto another?
In 2D.
In 2D.
In 2D:

So this suggests that we want to find an orthonormal
basis for col(A), U = span{
$$\hat{u}_{1,1},...,\hat{u}_{n}$$
} and then project
 \vec{b} onto U, forming \vec{b}' .
 $\vec{b}' = (\vec{b}_{1}\hat{u}_{1})\hat{u}_{1} + (\vec{b}_{1}\hat{u}_{2})\hat{u}_{n} + ... + (\vec{b}_{2}\hat{u}_{n})\hat{u}_{n}$
 $= (\hat{u}_{1}, \hat{u}_{2} - \hat{u}_{n}) \begin{pmatrix} (\vec{b}_{1}\hat{u}_{1}) \\ (\vec{b}_{1}\hat{u}_{2}) \\ (\vec{b}_{1}\hat{u}_{n}) \end{pmatrix}$
 $= (\hat{u}_{1}, \hat{u}_{2} - \hat{u}_{n}) \begin{pmatrix} (\hat{u}_{1}, \\ (\vec{b}_{1}\hat{u}_{1}) \\ (\vec{b}_{1}\hat{u}_{1}) \end{pmatrix}$
 $= (\hat{u}_{1}, \hat{u}_{2} - \hat{u}_{n}) \begin{pmatrix} (\hat{u}_{1}, \\ (\vec{b}_{1}\hat{u}_{1}) \\ (\vec{u}_{1}\hat{u}_{1}) \end{pmatrix}$
 $= (\hat{u}_{1}, \hat{u}_{2} - \hat{u}_{n}) \begin{pmatrix} \hat{u}_{1}, \\ (\vec{b}_{1}\hat{u}_{1}) \\ (\vec{u}_{n}\hat{u}_{1}) \end{pmatrix}$
 $= (\hat{u}_{1}, \hat{u}_{2} - \hat{u}_{n}) \begin{pmatrix} \hat{u}_{1}, \\ (\vec{u}_{1}\hat{u}_{1}) \\ (\vec{u}_{n}\hat{u}_{1}) \end{pmatrix}$
 $= UUT\vec{b}$
orthogonal projector of \vec{b} onto the columnspace of \vec{A}
 $= 7$ The liver system $\vec{A} \vec{x} = UUT\vec{b}$ is constituat.