Numeriul Analysis] 2020-03-24
Last Time: Least Square Problems

$$
\begin{aligned}
(\vec{b}-A \vec{x}) & \perp \operatorname{col} A \\
\Rightarrow & A^{\top} A \vec{x}=A^{\top} \vec{b}
\end{aligned}
$$

Normal Equation,
Solving the normal equations is bad idun numerizity:
The condition number (relation l_{2}) of $A^{\top} A$ is the squan of that of A.
Instod sole a consistent system:
$A \vec{x}=\underset{\operatorname{coj} A}{\operatorname{proj} b} \quad \Rightarrow$ If $\hat{u}_{1} \ldots \hat{u}_{n}$ is an orthonormal basis for cal , then $v v^{\top} \vec{b}=\left(\begin{array}{lll}\hat{u}_{1} & \cdots & \hat{u}_{n}\end{array}\right)\left(\left.\begin{array}{c}\hat{u}_{1}^{\top} \\ \vdots \\ \hat{u}_{n}^{\top}\end{array} \right\rvert\, \vec{b}\right.$ is the projection of \bar{b} onto $\operatorname{cal} A$.
$\Rightarrow \quad A_{x}=U U^{T} \vec{b}$ is consistent.

The cslumus if V an orthonormal, so U is an orthogonal matrix $\Rightarrow U^{\top} U=I$.

Use Grum-Schmidt pes).

G-S Pros:
Goal: Glen some set of vats $\vec{a}_{1}, \ldots \vec{a}_{n}$, form another sequence of vactos $\hat{q}_{1}, \hat{q}_{2} \ldots \hat{q}_{n}$ that an orthonormal.

Let: $\hat{q}_{1}=\vec{a}_{1} /\left\|\vec{a}_{1}\right\| \quad \Rightarrow \quad\left\|\hat{q}_{1}\right\|=1 \quad$ All norms an $\vec{q}_{2}^{\prime}=\vec{a}_{2}-\underbrace{\left(\vec{a}_{2}, \hat{q}_{1}\right) \hat{q}_{1} \quad}_{\text {inner product }} \quad(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}$.

$$
\xrightarrow[\substack{1 \\ \text { mean z } \\ \text { unituts. }}]{\hat{q}_{2}=\bar{q}_{2}^{\prime} /\left\|\hat{q}_{2}^{\prime}\right\|}
$$

Procter...

$$
\begin{aligned}
& \vec{q}_{3}^{\prime}=\vec{a}_{3}-\left(\vec{a}_{3}, \hat{q}_{2}\right) \hat{q}_{2}-\left(\vec{a}_{3}, \hat{q}_{1}\right) \hat{q}_{1} \\
& \hat{q}_{3}=\vec{a}_{3}^{\prime} /\left\|\vec{q}_{3}^{\prime}\right\|
\end{aligned}
$$

So when we ar dove, by construction,

$$
Q=\left(\begin{array}{llll}
\hat{q}_{1} & \hat{q}_{2} & \cdots & \hat{q}_{n}
\end{array}\right) \quad \text { then } \quad Q^{\top} Q=I
$$

And the projection of \vec{x} onto the column space of A, isl. $\quad \operatorname{span}\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ is just $\operatorname{proj}_{A} \vec{x}=Q Q^{\top} \vec{x}$

Furthermore, this automatecly yield, a factorization of the matrix A :

$$
\cot Q=\operatorname{col} A
$$

So any $\hat{q}_{j}=c_{1} \vec{a}_{1}+\ldots+c_{n} \vec{a}_{n}$
and liluwir $\vec{a}_{j}=d_{1} \hat{q}_{1}+\ldots+d_{n} \hat{q}_{n}$

This gis us the QR factorization:

$$
\left.\begin{array}{rl}
A & =Q R \\
\left(\vec{a}_{1} \cdots \vec{a}_{n}\right.
\end{array}\right)=\left(\begin{array}{lllll}
\hat{q}_{1} & \hat{q}_{2} & \cdots & \hat{q}_{n}
\end{array}\right)\left(\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \cdots & r_{1 n} \\
0 & r_{22} & & & \\
0 & & \ddots & & \\
\vdots & & & & r_{n n}
\end{array}\right)
$$

The quition is: what are the $r_{i j}$'s?
$r_{i j}$'s can be obtuind from G-S procosis.
Ex: From G-S:

$$
\begin{aligned}
& \text { iि wn G-S: } \quad \hat{q}_{1}=\vec{a}_{1 /} / \vec{a}_{1}\left\|\quad \Rightarrow \quad \vec{a}_{1}=\right\| \vec{a}_{1}\left\|\hat{q}_{1} \Rightarrow r_{11}=\right\| \vec{a}_{1} \| \\
& \vec{q}_{2}^{\prime}=\vec{a}_{2}-\left(\vec{a}_{2}, \hat{q}_{1}\right) \hat{q}_{1} \\
& \Rightarrow \vec{a}_{2}=\underbrace{\left(\vec{a}_{21} \hat{q}_{1}\right)} \hat{q}_{1}=\left\|\vec{a}_{2}-\left(\vec{a}_{2}, \vec{q}_{1}\right) \hat{q}_{1}\right\| \hat{q}_{2} \\
&=\underbrace{}_{12} \hat{q}_{1}+r_{22}
\end{aligned}
$$

With sufficient bookkupig, the G-S proucss yields the fucturization $A=Q R$.

So now: to solv least syuas:
(1) $A \vec{x}=Q Q^{\top} \vec{b}$

Alternatuily:
(2) Givin that $A=Q R$

7 Prafecred mathod
Solin $\underbrace{R \vec{x}}_{\uparrow}=\underbrace{Q^{\top} \vec{b}}$
Show later on HW or exam... upper tranyulur system

Applicatois: Lininr Regrossoon
Gien dutn: $\left(x_{i}^{1}, x_{i}^{2}, y_{i}\right)$ for $i=1 \ldots n$
Gewretié model: $y=a+b x_{1}+c x_{2}+\epsilon$
乞N(0, $\left.\sigma^{2}\right)$ erros or mensunment noira.
You obsern $y_{i}=a+b x_{i}^{1}+c x_{i}^{2}+\epsilon_{i}$
$\prod_{\substack{\text { dipundurt } \\ \text { vari-bhe }}}^{\uparrow} \uparrow \uparrow \begin{gathered}\text { indpundart vaciables }\end{gathered}$
Assumptoin is that noirn only appeas in y_{i}.
Givin an estiminte of $a, b, c: \hat{a}, \hat{b}, \hat{c}$, then the residuals an ginn as

$$
r_{i}={\underset{\sim}{0}}_{y_{i}}-\underbrace{\left(\hat{a}+\hat{b} x_{i}^{1}+\hat{c}+\hat{c} x_{i}^{2}\right)}_{a} \text { valuedinted valu, givin } \begin{array}{r}
\text { estimäts } \hat{a}, \hat{b}, \hat{c} .
\end{array}
$$

Questivi : How do we estimàte a, b, c ?
One opton: minimize the squard residuals:

$$
\min _{a, b, c}\|\vec{r}\|_{2}^{2}=\min _{a, b, c} \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}^{\prime}-c x_{i}^{2}\right)^{2}
$$

This is a least squares poblem.
Form the least squan system:

$$
\min _{a, b, c}\|_{X}^{\left(\begin{array}{ccc}
1 & x_{1}^{1} & x_{1}^{2} \\
1 & x_{2}^{2} & x_{2}^{2} \\
\vdots & \vdots & \vdots \\
1 & x_{n}^{1} & x_{n}^{2}
\end{array}\right)} \underbrace{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)}_{\vec{a}}-\underbrace{\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)}_{\vec{y}}\|=\underbrace{\min \|x \vec{a}-\vec{y}\|}_{\vec{a}}
$$

Graphically

One additional method to solus least squats pablums:
Using the SUD.
Recall: If $A \in \mathbb{R}^{m \times n}, m \geqslant n, \operatorname{rank} A=n$.
Thin we can write $A=\cup S V_{r}^{\top}$

Special car: If A is murstible $(m=n)$ then

$$
\begin{aligned}
A^{-1} & =\left(U S V^{\top}\right)^{-1}=V^{-T} S^{-1} U^{-1} & & \text { but } U, V \text { are orthogonal } \\
& =V S^{-1} U^{\top} & & \Rightarrow V^{\top}=U^{-1}
\end{aligned}
$$

If A is not invertible $(m>n)$
Define the prevdo-inuvs of A to be:

$$
A^{+}=V S^{-1} U^{\top}
$$

\Rightarrow Even though A is not inurtible,

$$
\begin{aligned}
A^{+} A & =\left(V S^{-1} U^{\top}\right)\left(U S V^{\top}\right) \\
& =V \underbrace{S^{-1} \underbrace{\top} u S}_{I} V^{\top}
\end{aligned}
$$

$=V V^{\top}=I \quad \sin \pi V$ is squat.
$\mathrm{HW} /$ Exam problem:
Show that the least square solution to $A \vec{x}=\bar{b}$ is

$$
\vec{x}=V S^{-1} V^{\top} \vec{b} .
$$

