Next topic : Erginvalue Problems

Recall:
$$\lambda, \hat{\tau}$$
 an an eigenvalue puir if $A \cdot \hat{\tau} = \lambda \cdot \hat{\tau}$.
Direct conjustation : form characteristic equation:
 $d_{i+}(A - \lambda I) = 0$
polynomial in λ of degree n if $A \in \mathbb{R}^{nm}$.
 $p(\lambda)$
The solution to $p(\lambda)=0$ an the eigenvalue.

This is expension for various nucleons = forming p(x) cost n! flops. Thin, a nonlimit root finding algorithm must be used to solve p(x) = 0. (Bisicher, Newton, etc.)

Application: Systems of linear Initial Value problems:

$$\vec{y}' = A \vec{y} \qquad \vec{y}(t) = \begin{pmatrix} y_1(t) \\ y_1(t) \\ \vdots \\ y_m(t) \end{pmatrix} \qquad \vec{y}(t) = \begin{pmatrix} y_1(t) \\ y_1(t) \\ \vdots \\ y_m(t) \end{pmatrix}$$
One solution we true is to define the diagonalize A . (Investigate diagonalization d_1 and d_2 and d_3 and d_4 and d_4 .

 $A = P D P^{-1}$

$$\vec{x} = P D P^{-1} \qquad \vec{y}' = P D P' \vec{y} \qquad \vec{y}' = P D P' \vec{y} \qquad \vec{y}' = D P' \vec{y}' \qquad \vec{y}' = D P' \vec{y} \qquad \vec{y}' = D P$$

Pick larget element of
$$\vec{\tau}_{i}$$
 cill if \vec{v}_{k} . (in absolute value)
=7 $[\lambda - a_{kk}] \vec{v}_{k} = \sum_{\substack{j \neq k}} a_{kj} \vec{v}_{j}$
 $[\lambda - a_{kk}] [\vec{v}_{k}] \notin \sum_{\substack{j \neq k}} [a_{kj}] [\vec{v}_{j}]$
 $\leq \sum_{\substack{j \neq k}} [a_{kj}] We will revise this theorem
in data! when discossij
Taubis is metod.
The Power Method
Co-1 Colorlate the eiginvalue with largest originitide and
associated eiginvector. (Assume that A is decigoralizable.)
Short with a random vector \vec{w} .
If \vec{w} is truly random, then it is a linear combinator of
every eigenvector \vec{A} A.
 $-7 \vec{w} = \sum_{\substack{j \in C_{j} \vec{v}_{j}}} c_{j}\vec{v}_{j}$
 $A_{j}\vec{w} = A(A_{j}\vec{w})$
 $= \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}} For cutficiently larger
 $A_{j}\vec{w} = \sum_{\substack{j \in C_{j} \vec{N}_{j}\vec{v}_{j}}}$$$$$$$$$$$$$$$$$$$$$

(Assume that
$$|\lambda_{1}| > |\lambda_{2}| > |\lambda_{3}| \cdots$$
)
If $|\lambda_{1}| > |\lambda_{2}|$, sufficiently larger, then λ_{1} dominates.
So eventually, if $g^{(h)} = A^{h}w$, then
 $g^{(h+1)} = A^{h+1}w$
 $= A g^{(h)} = \lambda_{1} g^{(h)}$

Normalize these iterats an every step: $\vec{w}_{0} = \vec{w}/\|\vec{w}\|$ $\vec{w}_{1} = A\vec{w}_{0}$ -- $\vec{w}_{n} = A\vec{w}_{n-1}$ $\|A\vec{w}_{0}\|$

Under this normalization, the eigenvector λ_i is approximately equal to (1) Which $\mathcal{W}_{ik-i} \approx \lambda_i$ it component of \overline{w}_k

(2) Better option is to estimate
$$\lambda_{1}$$
 as
 $\lambda_{1} \approx (A \vec{w}_{k}, \vec{w}_{k})$
Since $A \vec{w}_{k} \approx \lambda_{1} \vec{w}_{k}$
 $\vec{w}_{k} A \vec{w}_{k} \approx \lambda_{1} \vec{w}_{k} \vec{w}_{k}$
 $=1 \text{ since } \vec{w}_{k} \text{ is a unity vector.}$

The Whi's approach V, as k-0.

How fast does the power anthold converge?
Examine the quantity
$$A^{k}\vec{w} - \vec{V}_{1}$$
:
If k is sufficiently large, then $A^{k}\vec{w} \simeq c_{1}\lambda^{k}\vec{v}_{1}$ (assume $c_{1}, 20$)
 $A^{k}\vec{w} \simeq c_{1}\lambda^{k}\vec{v}_{1}$
 $\Rightarrow \vec{v}_{1} \approx \frac{1}{c_{1}\lambda^{k}}A^{k}\vec{w}$
 $= \frac{1}{c_{1}\lambda^{k}}\left(c_{1}\lambda^{k}\vec{v}_{1} + c_{2}\lambda^{k}\vec{v}_{2} + ... + c_{n}\lambda^{k}\vec{v}_{n}\right)$
 $= \vec{v}_{r} + \frac{c_{1}}{c_{1}}\left(\frac{\lambda_{1}}{\lambda}\right)^{k}\vec{v}_{2} + \frac{c_{2}}{c_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k}\vec{v}_{1} + ... + \frac{c_{n}}{c_{1}}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k}\vec{v}_{n}$.
If $[\lambda_{1}]c[\lambda_{1}]$ for $j > l$, then $\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \rightarrow 0$ as $k \neq \infty$
 $\vec{W}_{k} = \frac{A^{k}\vec{w}}{\|A^{k}\vec{w}\|}$
 $\|\vec{w}_{k} - \vec{v}_{1}\| \approx \left[\frac{c_{2}}{c_{1}}\right] \left|\frac{\lambda_{n}}{\lambda_{1}}\right|^{k}$
The convergence of the control depends on the gap in the eigenvalue.
I.e. the reliable size of λ_{2} to λ_{1} .
This means that if $\left[\frac{\lambda_{n}}{\lambda_{1}}\right] \approx l$, then convergence is very clave.

[6]