Numerical Analysio
March 26, 2020.

Last Class: Least Squas Problems HW $4-6$ 65\%
$\frac{\text { New Gradig Sheme }}{\text { HW } 1-3 \quad 10 \%}$
Exam 125%

Instad of solving the normal eqvitions, soln the system $A \vec{x}=\operatorname{proj}_{\text {colA }} \vec{b}$
(1) QR factorizatoir
(2) SUD
(3) Example applicution of liviar regnession.
Next topir: Eiginvalu Problems
Recull: λ, \vec{v} an an exginumlu puir if $A \vec{v}=\lambda \vec{v}$. Dinct conputatoir: form charactristic equation:

$$
\underbrace{\operatorname{det}(A-\lambda I)}=0
$$

pulynominil in λ of degnee n if $A \in \mathbb{R}^{\text {nem }}$.
The solution to $\rho(\lambda)=0$ an the ecyeinvales.
This is expensin for variois nusons = forming $\rho(\lambda)$ cost n ! flops,
Thin, a nonlimeir nost findigy algorithm most be used to solu $p(x)=0$. (Biscitar, Newton, etr.)

Application: Systems of linear Initial Valu problems:

$$
\vec{y}^{\prime}=A \vec{y} \quad \vec{y}(t)=\left(\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\vdots \\
y_{n}(t)
\end{array}\right) \quad \vec{y}^{\prime}(t)=\left(\begin{array}{c}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t) \\
\vdots \\
y_{n}^{\prime}(t)
\end{array}\right)
$$

One solutisi mathod is to diayonalize A. (Investigate diggonalization of matris.)

$$
\begin{aligned}
& A=P D P^{-1} \\
& \left.\left(\vec{v}_{1}, \vec{v}_{2} \ldots \vec{v}_{n}\right) \stackrel{\uparrow}{ } \begin{array}{llll}
\lambda_{1} & & \\
& & \ddots & \\
& & & \\
& & \lambda_{n}
\end{array}\right) \\
& \Rightarrow \quad \vec{u}^{\prime}=D \vec{u} \\
& \Rightarrow \quad u_{1}^{\prime}=\lambda_{1} u_{1} \\
& u_{i}^{\prime}=\lambda_{2} u_{2} \quad \Rightarrow \quad u_{i}=c_{i} e^{\lambda_{i} t} \\
& u_{n}^{\prime}=\lambda_{n} u_{n} \\
& \vec{y}^{\prime}=P D P^{-1} \vec{y} \\
& \underbrace{P^{-1} \vec{y}^{\prime}}_{\vec{u}^{\prime}}=D \underbrace{P^{-1} \vec{y}}_{\vec{u}} \\
& u_{i}^{\prime}=\lambda_{i} c_{i} e^{\lambda_{i} t} \\
& =\lambda_{i} u_{i}
\end{aligned}
$$

\Rightarrow Change varimbly buck.

$$
\begin{aligned}
& \vec{u}=\left(\begin{array}{c}
c_{1} u_{1} \\
\vdots \\
c_{n} u_{n}
\end{array}\right)=P^{-1} \vec{y} \\
& \Rightarrow \vec{y}=P \vec{u} .
\end{aligned}
$$

Solving $\vec{y}^{\prime}=A \vec{y}$ was radued to fuiding elyénvalus and ergénsatos of A.

Big Important Theonm:
Gerschyorin"s Theorem Let A be an $n \times n$ matrix (valor complex). Then, all the eigenvalus of A lie in $\bigcup_{i=1}^{n} D_{i}$, when $0^{\text {th }}$ diagonal of A
$D_{i}=\{z \in \mathbb{C}$ sch that $\left|z-a_{i i}\right| \leq \underbrace{\sum_{j \neq i}\left|a_{i j}\right|}\}$
referred to as a
"Gerschgorin Dish".
sum of off-dayonoal entries in wow i.

If m disks are connected, $\leftarrow 5$ disk 3 connected,
then m eigenvalues ar located in this regesin.
Graphically

Simplest can:

$$
A \text { is dlagion-1 : } A=\left(\begin{array}{ccc}
a_{11} & & \\
& a_{22} & 0 \\
0 & \ddots & a_{n n}
\end{array}\right) \Rightarrow \lambda_{i}=a_{i i}
$$

Proof: Let λ, \vec{v} be an eiginvalu/vator pair.
Then $A \vec{v}=\lambda \vec{v} \Rightarrow$ th component

$$
\begin{aligned}
& \sum a_{i j} v_{j}=\lambda v_{i} \quad \text { for all } i \\
\Rightarrow & \left(\lambda-a_{i i}\right) v_{i}=\sum_{j \neq i} a_{i j} v_{j}
\end{aligned}
$$

Prick largest element of v, call it v_{k}. (in absolvte valu)

$$
\begin{aligned}
\Rightarrow & \left(\lambda-a_{k k}\right) v_{k}=\sum_{j \neq k} a_{k j} v_{j} \\
& \left|\lambda-a_{k k}\right| \nu_{\nu k}\left|\leq \sum_{j \neq h}\right| a_{k j} \left\lvert\, \underbrace{\frac{\left|v_{j}\right|}{\left|v_{k}\right|}}\right.
\end{aligned}
$$

$\leq \sum_{j \neq k}\left|a_{k j}\right|$ We will sevist this thearm in ditail when disicosig Jawbi's metrod.
The Power Method
Coul Calculate the eiginvalu w.th largest magnitude and associated eiginvactor. (Assume that A is dingonalizable.) Start with a random vatur $\stackrel{\rightharpoonup}{w}$.

If \vec{w} is troly rundom, then it is a lixienr combinatońn of evry eijenvector of A.

$$
\Rightarrow \quad \vec{w}=\sum_{j=1}^{n} c_{j} \stackrel{\rightharpoonup}{v}_{j} \text { eigenvectis. }
$$

$A_{\text {pply }} A$ to $\vec{w}: A \vec{w}=A\left(\sum_{j} c_{j} \vec{v}_{j}\right)$

$$
=\sum_{j} c_{j} A \vec{v}_{3}
$$

$$
=\sum_{j} c_{j} \lambda_{j} \vec{v}_{j}
$$

$$
\begin{aligned}
A^{2} \vec{w} & =A(A \vec{w}) \\
& =\sum_{j} c_{j} \lambda_{j}^{2} \vec{v}_{j} \\
A^{k} \vec{w} & =\sum_{j} c_{j} \lambda_{j}^{k} \vec{v}_{s}
\end{aligned}
$$

For sufficiently lage k, this is dominated by the lagget $\lambda, \approx c_{1} \lambda_{1}^{k} \vec{v}_{1}$.
(Assume that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right| \cdots$)
If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, sufficiently larger, then λ_{1} dominates.
So eventually, if $\vec{y}^{(k)}=A^{k} \vec{w}$, then

$$
\begin{aligned}
\hat{y}^{(h+1)} & =A^{h+1} \vec{w} \\
& =A \vec{y}^{(h)}=\lambda_{1} y^{-(l)}
\end{aligned}
$$

Normalize these itents on every step:

$$
\begin{aligned}
& \vec{w}_{0}=\vec{w} /\|\vec{w}\| \\
& \vec{w}_{1}=\frac{A \vec{w}_{0}}{\left\|A \vec{w}_{0}\right\|} \quad \cdots \quad \vec{w}_{k}=\frac{A \vec{w}_{m-1}}{\left\|A \vec{w}_{k-1}\right\|} .
\end{aligned}
$$

Under this normalization, the ecieunctur λ_{1} is approximately equal to
(1) $w_{k i} / w_{(k-1) i} \approx \lambda_{1}$
$i^{\text {th }}{ }^{\uparrow}$ component

$$
\text { of } \vec{w}_{h}
$$

(2) Better option is to estiminter λ_{1} as

$$
x_{2} \approx\left(A \vec{w}_{k}, \vec{w}_{k}\right)
$$

Since $\quad A \vec{w}_{k} \approx \lambda_{1} \vec{w}_{k}$

$$
\vec{w}_{k}^{\top} A \vec{w}_{b} \approx \lambda_{1} \underbrace{\vec{w}_{k}^{\top} \vec{w}_{k}}_{=1}
$$ vector.

The $\vec{w}_{b}^{\prime s}$ approach \vec{v}_{1} as $k \rightarrow \infty$.

How fast does the power method connrge?
Examine the quantity $A^{h} \vec{w}-\vec{V}_{1}$:
If k is sufficicity large, then $A^{k} \vec{w} \approx c_{1} \lambda_{1}^{k} \vec{v}_{1} \quad\binom{$ assume }{$c_{1}>0}$

$$
\begin{aligned}
A^{k} \vec{w} & =c_{1} \lambda_{1}^{k} \vec{v}_{1} \\
\Rightarrow \vec{v}_{1} & \approx \frac{1}{c_{1} \lambda_{1}^{k}} A^{k} \vec{w} \\
& =\frac{1}{c_{1} \lambda_{1}^{k}}\left(c_{1} \lambda_{1}^{k} \vec{v}_{1}+c_{2} \lambda_{2}^{k} \vec{v}_{2}+\ldots+c_{n} \lambda_{n}^{k} \vec{v}_{n}\right) \\
& =\vec{v}_{1}+\frac{c_{2}}{c_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{\frac{k}{v_{2}}}+\frac{c_{3}}{c_{1}}\left(\frac{\lambda_{3}}{\lambda_{1}}\right)^{k} \vec{v}_{3}+\ldots+\frac{c_{n}}{c_{1}}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \vec{v}_{n} .
\end{aligned}
$$

If $\left|\lambda_{j}\right|<\left|\lambda_{1}\right|$ for $j>1$, then $\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$

$$
\begin{aligned}
& \vec{w}_{k}=\frac{A^{k} \vec{w}}{\left\|A^{k} \vec{w}\right\|} \\
&\left\|\vec{w}_{k}-\vec{v}_{1}\right\| \approx\left|\frac{c_{2}}{c_{1}}\right|\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k} \\
& \sim g\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)^{k}
\end{aligned}
$$

The convergence of the power method depends on the gap in the enginvals.
Fie. the rolutie size of λ_{2} to λ_{1}.
This menus that if $\left|\frac{\lambda_{2}}{\lambda_{1}}\right| \approx 1$, then convergence is very slow.

