March 31, 2020
Numerical Analysis
Last class: Power method for computing eigenvalues of matrices.
\Rightarrow only allows for the computation of the eigenvalue with the largest absolute value.
Start with random \vec{w}_{0}. with $\left\|\vec{w}_{0}\right\|=1$.
compute power of A applied to \vec{w}_{0}
Sinus $\quad \vec{w}_{0}=c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}$

$$
A^{k} \vec{w}_{0}=c_{1} \lambda_{1}^{k} \vec{v}_{1}+\ldots+c_{n} \lambda_{n}^{k} \vec{v}_{n}
$$

If $\left|\lambda_{1}\right|>\left|\lambda_{j}\right|$ for all $j \neq 1$, then

$$
\begin{gathered}
A^{k} \vec{w}_{0} \approx c_{1} \lambda_{1}^{k} \vec{v}_{1} \\
\text { Normalize: } \vec{w}_{k}=\frac{A^{k} \vec{w}_{0}}{\left\|A^{k} \vec{w}_{0}\right\|} \approx \vec{v}_{1}
\end{gathered}
$$

to compute λ_{1}, taken $\underbrace{\left(A \vec{w}_{k i}\right), w_{k i}}_{\text {ratio of components }} \approx \lambda_{1}$
Since $A \vec{w}_{h} \approx \lambda_{1} \vec{w}_{h}$ for k large enough.
Convagune relies on $\left|\lambda_{1}\right|$ being large than all other $\left|\lambda_{i}\right|$.
Ex: $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad \vec{v}_{1}=\binom{1}{0} \quad \lambda_{1}=1 \quad \sum_{1} \quad\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$

$$
\vec{v}_{2}=\binom{0}{1} \quad \lambda_{2}=-1
$$

Let $\vec{w}_{0}=\binom{a}{b}$, thin $A \vec{w}_{0}=\binom{a}{-b}$, dent connuge to

$$
A^{2} \vec{w}_{0}=\binom{a}{b}\left\{\begin{array}{l}
\text { cont col } \\
\text { anythij }
\end{array}\right.
$$

Power muted fails for this example.
If $\vec{w}_{k}=\frac{A^{k} \vec{w}_{0}}{\left\|A^{k} \vec{w}_{0}\right\|}$, then

$$
\left\|\stackrel{\rightharpoonup}{w}_{h}-\vec{v}_{1}\right\| \approx O\left(\left.\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k} \right\rvert\,\right.
$$

How do we accelerate this conveyance?
Aden one Power method with shift
If a matrix A has eigenvalue $\lambda_{1}-\lambda_{n}$, then A-s I has eigenvalues $x_{i}-s$.

Pf: $(A \cdot s I) \vec{v}=A \vec{v}-s \vec{v}$

$$
\begin{aligned}
& =\lambda \vec{v}-s \vec{v} \\
& =(\lambda-s) \vec{v}
\end{aligned}
$$

Choose s to increase the convergence rate:

to minimize the ratio $\left(\frac{\lambda_{2}}{\lambda_{1}}\right)$, chook shift such that $\left|\lambda_{2}\right|=|\tilde{\lambda}|$.

Ie. choose s sech that

$$
\left|\frac{\lambda_{2}-s}{\lambda_{1}-s}\right|=\left|\frac{\tilde{\lambda}-s}{\lambda_{1}-s}\right| .
$$

Power method with shift allows for computing the most meyativ of the must position eigenvalue.

How do we compute elginvalis in the middle?
I ie, if $\lambda_{1}>\lambda_{2}>\lambda_{3}>\ldots .>\lambda_{n-1}>\lambda_{n}$
then Power Method $w /$ Shift can comple either λ_{1} or λ_{n}.
To compute $\lambda_{2} \ldots \lambda_{n-1}$, we need a different idea.
Idea Two Apply the pours method to find the exyinvolves of $(A-s I)^{-1}$. This is called the Inverse Power Method with Shift.

If A has eigenvalue λ, then A^{-1} has eigenvalue $\frac{1}{\lambda}$.

$$
A \vec{v}=\lambda \vec{v} \Rightarrow \frac{1}{\lambda} \vec{v}=A^{-1} \vec{v}
$$

Forthermon: $(A-s I)^{-1}$ has eigenvalue $\frac{1}{x-s}$.
If we chook s properly to make $\frac{1}{x-s}$ large, then the Inverse Power Method with shift can converge very rapidly.

Choosing s close to λ_{l} causes $\frac{1}{\lambda_{l}-s}$ to become very la ge in absolute value, while $\frac{1}{x_{j}-s}$ for $j \neq l$ romains bonded.

This scheme is of case much mon expensive since "applying" A^{-1} requires solving a linear system ($\theta\left(n^{3}\right)$ vs. $\theta\left(n^{2}\right)$ flops).

The algorithm
(1) Set \vec{w}_{0} to be random.
(2) Solve $(A-s I) \vec{y}_{1}=\vec{w}_{0}$.

$$
\Leftrightarrow \vec{y}_{1}=(A-s I)^{-1} \vec{w}_{0}
$$

(3) Set $\vec{w}_{1}=\vec{y}_{1} / \| \vec{y}_{1}, 1$
(4) Packed as in the Pomirmethod.

The hard part is knowing what to choose for s. You med estimates fir the eigineniss.

Both schemes only compute one eigenvalua/vectior at a tin.

Jacobi's Method
Can us compute all cigenvalue) and nestors at the same time.
If A were digonal, then we immediately know the esgenvalus. Can us make A diagonal?

Recall Similarity transform: $B=M^{-1} A M$ then B is similar to A, ie. they have the same eigenvalue.

Proof: Look at their characteristic pulynomiats:

$$
\begin{aligned}
\rho_{A}(\lambda) & =\operatorname{det}(A-\lambda I) \quad \operatorname{degnae} n \text { polynomial } \\
\rho_{B}(\lambda) & =\operatorname{det}(B-\lambda I) \\
& =\operatorname{det}\left(M^{-1} A M-\lambda I\right) \\
& =\operatorname{dat}\left(M^{-1} A M-\lambda M^{-1} M\right) \\
& =\operatorname{dtt}\left(M^{-1}(A-\lambda I) M\right) \\
& =\operatorname{dtt}\left(M^{-1}\right) \operatorname{dit}(A-\lambda I) \operatorname{dit}(M) \\
& =\rho_{A}(\lambda) .
\end{aligned}
$$

If M wen chosen to be the matrix of eigenvector of A, then $A=M D M^{-1} \quad \Rightarrow \quad D=M^{-1} A M$

Diayonalization of A.
Ex: Let A be a seal symmetric 2×2 matrix.
$A=\left(\begin{array}{ll}a & b \\ b & d\end{array}\right) \quad \Rightarrow$ Eigenvalus are real, and it is diagonalized by an orthogonal matrix V.

All 2×2 orthogonal matrices can be parameterized as:

$$
V=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right) \quad(2 \times 2 \text { rotation matrix }) .
$$

We want
$\underbrace{V^{\top}}_{=V^{-1}} A V=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \quad$ Write at com \quad of $V^{\top} A V$:

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right) \underbrace{\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right)\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)}=\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \\
& \left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
a \cos \varphi-b \sin \varphi & a \sin \varphi+b \cos \varphi \\
b \cos \varphi-d \sin \varphi & b \sin \varphi+d \cos \varphi
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right) \\
& \Rightarrow a \cos \varphi \sin \varphi+b \cos ^{2} \varphi-b \sin ^{2} \varphi-d \cos \varphi \sin \varphi=0 \\
& a \cos \varphi \sin \varphi-b \sin ^{2} \varphi+b \cos ^{2} \varphi-d \cos \varphi \sin \varphi=0
\end{aligned}
$$

Next: Find φ.
Add equation: $(a-d) \cos \varphi \sin \varphi+b\left(\cos ^{2} \varphi-\sin ^{2} \varphi\right)=0$

$$
\begin{aligned}
& \Rightarrow(a-d) \frac{1}{2} \sin 2 \varphi+b \cos 2 \varphi=0 \\
& \Rightarrow \tan 2 \varphi=\frac{2 b}{d-a} \Rightarrow \varphi=\frac{1}{2} a \tan \left(\frac{2 b}{d-a}\right) .
\end{aligned}
$$

If $d-a=0$, then $\frac{2 b}{d-a}=\infty$,
\Rightarrow in C or Fortran use

$$
q=\frac{1}{2} \operatorname{atan} 2(d-a, 2 b) .
$$

So we fund 4 such that $V^{\top} A V=D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$.

The Jacobi Method for an $n \times n$ matrix
Define $\quad R^{p a}(\varphi)=$

$R^{p q}(\varphi)$ can be used to set the $p q$ and $q p$ elements of a real symmetric matrix A to zen.
$R^{p q}(\varphi)^{\top} A R^{p q}(\varphi)$ leans all rows and columns unchanged except for now/cslumn p and cow/alumn q.
The algorithm:
(1) Set $A^{(0)}=A$
(2) Find $p q$ element in $A^{(k)}$ with maximum absolute value.
(3) Compute $q_{k}=\frac{1}{2} \operatorname{atan}\left(\frac{2 a_{p q}^{(k)}}{a_{99}^{(k)}-a_{p p}^{(k)}}\right)$
(4) Set $A^{(k+1)}=R^{p q}\left(\varphi_{w}\right)^{\top} A^{(b)} R^{p q}\left(\varphi_{k}\right)$

Continue this algorithm until all $\left|\begin{array}{c}a_{p q}^{(k)}\end{array}\right|<\epsilon, p \neq q$.
Then $A^{(k)} \rightarrow\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ 0 & \ddots & 0 \\ 0 & & \lambda_{n}\end{array}\right)$ as $k \rightarrow \infty$
matrix of eryenvectos.
and firthermove: $R^{(k)}=R\left(\varphi_{1}\right) R\left(\varphi_{2}\right) \ldots R\left(\varphi_{w}\right) \rightarrow\left(\vec{V}_{1} \ldots \vec{V}_{n}\right)$

