March 31, 2020 Numerical Analysis

Last class : Power withod for computing eigenvalues it
metrics.

$$\Rightarrow$$
 only allows for the computation of the
eigenvalue with the langest absolute value.
Short with random the with $||twill=1|$.
compute powers of A applied to the
Shur the = $c_1 \sqrt{t_1} + \dots + c_n \sqrt{t_n}$
 $A^{t_n} to = c_1 \sqrt{t_1} + \dots + c_n \sqrt{t_n}$
 $TF(\lambda_1|>|\lambda_2|)$ for all $j \neq 1$, then
 $A^{t_n} to \approx c_1 \lambda_1^{t_n} \frac{1}{t_1}$.
Normalize: $W_{t_1} = \frac{A^{t_n} W_{t_2}}{\||A^{t_n} t_{t_1}\||} \approx \sqrt{t_1}$
to compute λ_1 , then $(A W_{t_n})_{i_1} \approx \lambda_1$
 $\int compute \lambda_1$, then $(A W_{t_n})_{i_n} \approx \lambda_1$
 $\int compute \lambda_1$, then $(A W_{t_n})_{i_n} \approx \lambda_1$
 $\int compute \lambda_1$, then $(A W_{t_n})_{i_n} \approx \lambda_1$
 $\int components$
Since $A W_{t_n} \approx \lambda_1 W_{t_n}$ for be large enough.
Convergence relies on $|\lambda_1|$ here j_n larger than of other $|\lambda_2|$.
 $E_{X^{-1}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \gamma \quad \sqrt{t_1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \lambda_1 = 1 \quad \sum_{k=1}^{k-1} |\lambda_k| = |\lambda_k|$

Let
$$\overline{w}_0 = \begin{pmatrix} \alpha \\ b \end{pmatrix}$$
, then $A \overline{w}_0 = \begin{pmatrix} \alpha \\ -b \end{pmatrix}$ dent conarge to
 $A^2 \overline{w}_0 = \begin{pmatrix} \alpha \\ -b \end{pmatrix}$ arythiz
Power metal fills
 $A^2 \overline{w}_0 = \begin{pmatrix} \alpha \\ -b \end{pmatrix}$ Arythiz
Power metal fills
 $A^2 \overline{w}_0 = \begin{pmatrix} \alpha \\ -b \end{pmatrix}$ Here $A^2 \overline{w}_0$.
If $\overline{w}_1 = A^2 \overline{w}_0$, then
 $A \overline{w}_0 = \overline{v}_1 I \cong O(\left|\frac{\lambda_0}{\lambda_1}\right|^4)$ How do we accelerate this
convergence?
Idea one Power method with shift
If a materix A has enjervales $\lambda_1 - \lambda_1$, then
 $A - sI$ has enjervalues $\lambda_1 - \lambda_1$, then
 $A - sI$ has enjervalues $\lambda_1 - \lambda_2$, then
 $A - sI$ has enjervalues $\lambda_1 - \lambda_1$, then
 $A - sI$ has enjervalues $\lambda_2 - s$.
Pf: $(A - sI) \overline{v} = A\overline{v} - s\overline{v}$
 $= (\lambda - s)\overline{v}$
Choose s to increase the convergence vale:
 $A_1 = \int \overline{A} + \int \overline{v} + \int \overline{v}$

How do we comple eigenvalues in the middle?
The if
$$A_1 > A_2 > A_3 > \dots > A_{n_1} > A_n$$

then Power Method w/ Shift can compade either A_1 or A_n .
To comple $A_2 - A_{n_1}$, we need a different idea.
Idea Two Apply the power method to find the eigenvalues of
 $(A - sI)^{-1}$. This is called the Inverse Power Method with Shift.
If A has eigenvalue A_1 then A^{-1} has eigenvalue $\frac{1}{A}$.
 $Av = Av = n_1 + v = K^* V$
For thermon: $(A - sI)^{-1}$ has eigenvalue $\frac{1}{A - s}$.
If we choose s properly to make $\frac{1}{A - s}$ large, then the
Inverse Power Method with shift can converge very registly.
Choosing s close to A_2 causes $\frac{1}{A - s}$ to become very large
is absolve value, while $\frac{1}{A - s}$ for $j \neq l$ remains bounded.
This scheme is of course much more expensive since
"applying" A^{-1} requires solving a linear system $(\delta(w^2) v \cdot \delta(w^2) - flops)$.
The algorithm
 0 set v_0 to be random.
 (B) Solve $(A - sI) \frac{1}{2} = w_0$.
 $(a - si, -\frac{1}{2}, -\frac{1}{2}$

Can we compute all eigenvalues and victors at the same time. If A were digonal, then we immediately know the eigenvalues. Can we make A diagonal?

All 2x2 orthogonal matrix can la parameterized as:

$$V = \begin{pmatrix} \cos q & \sin q \\ -\sin q & \cos q \end{pmatrix}$$
 (2x2 votation matrix).

The Jacobi Method for matrix NXN an Define R^{PA}(4) = / l l l Cosep Sing COSCE NOW -5199 column p column q. R^{P9}(4) can be used to set the pg and gp elements of a real symmetric matrix A to zero. R^{P9}(4) A R^{P9}(4) leave all rows and columns unchanged except for vow/rolumn p and vow/rolumn g. The alyorithm: $() \quad Set \quad A^{(0)} = A$ (2) Find pg element in A^(W) with maximum absolute value. (3) Compute $q_{k} = \frac{1}{2} \operatorname{atnn} \left(\frac{2 \operatorname{apg}}{a_{gg}^{(k)} - a_{pp}^{(k)}} \right)$ (4) Set A^(L+1) = R^{P9}(qu) A^(L) R^{P9}(qu) Continue this algor; then until all lapped KE, p=q. Then $A^{(h)} \rightarrow \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix}$ as $k \rightarrow \infty$ mutrix of eigenvactors and furthermore: R = R(q1) R(q2) ... R(qw) ~ (V1... Vn)