April 2, 2020 Numerical Analysis

HW Y will be reland at 12am Monday April 6
due 12am Tuesday April 7
Contrat: everything between HW3 and Jacobi's Method (i.e.
lectur on Teresday March 31).
Jacobi's Method
If A is real symmetric 2x2 matrix:
Then
$$A = VDV^{T}$$
 when V is an orthogonal matrix
 $D = \begin{pmatrix} cosq & sinq \\ -sinq & cosq \end{pmatrix}$
 $D = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix}$
 $T = A = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$, comple q wing a, b, d to digonalize A.
If $A = (a & b \\ b & d)$, comple q wing a, b, d to digonalize A.
If A is real symmetric is an interval.

iden to zero-art off-diagonal elements.
Let
$$R^{pn}(q) = \begin{pmatrix} 1 & & & \\$$

Jacobi's Algorithm

Apply a segurue of R/qh/'s to A that zero out all off-diagonal elevents.

Lemma: If R is an orthogonal transformation, then

$$\|A\|_{F} = \|RTAR\|_{F}$$

 $Fo beniw Norm$
 $\|A\|_{F} = \left(\sum_{ij} |a_{ij}|^{2}\right)^{1/2}$

<u>Proof</u>: Let $B = R^{T}AR$. Then A and B have the same eigenvalues, and $B^{2} = (R^{T}AR)(R^{T}AR)$ $= R^{T}A^{2}R$.

=>
$$A^{2}$$
 and B^{2} have the same eigenvalues, and then for
 $trace(A^{2}) = trace(B^{2})$.
But II $A \parallel_{p}^{2} = trace(A^{T}A) = trace(AA) = trace(B^{2}) = \parallel B \parallel_{p}^{2}$.
(This was proven in Honework).
 I .
[2]

Some instation:

Split the Frobenius norm into two pieces:
Let
$$\|A\|_{F}^{2} = S(A) = \sum_{i,j} |a_{ij}|^{2}$$

 $D(A) = \sum_{i} |a_{ii}|^{2}$ diagonal part
 $L(A) = \sum_{i \neq j} |a_{ij}|^{2}$ off-diagonal part
 $=7 \quad S(A) = D(A) + L(A) = \|A\|_{F}^{2}$.

Theorem Let
$$A^{(h)}$$
 be the k^{th} iterate in the Jacobi Algorithm.
Then $\lim_{h \to \infty} L(A^{(h)}) = 0$
 $\lim_{h \to \infty} D(A^{(h)}) = true(A^2).$

Proof: Let app be the off-diagonal element of
$$A$$
 with
the largest absolute value.
Let $B = R^{P_{\alpha}}(q)^{T} A R^{P_{\alpha}}(q)$ (a single Jacobi Rotation)
Then $\begin{pmatrix} bpp & bpq \\ bqp & bqq \end{pmatrix} = \begin{pmatrix} cosq & sinq \\ -sinq & cosq \end{pmatrix}^{T}(app & apq \\ aqp & aqq \end{pmatrix} \begin{pmatrix} cosq & sinq \\ -sinq & cosq \end{pmatrix}$
and don't forget $bpq = bqp = 0$. (by construction).
But from the levima, $\|\tilde{B}\|_{P}^{2} = \|\tilde{R}T\tilde{A}R\|_{F}^{2} = \|\tilde{A}\|_{F}^{2}$.
 $=7$ This implies that $bpp + bqq = app^{2} + aqq^{2} + 2apq^{2}$.
Furthermon, $S(\tilde{B}) = D(\tilde{B}) + L(\tilde{B})$
 $= D(\tilde{A}) + L(\tilde{A})$

So this means that
$$D(\overline{B}) = D(\overline{A}) + L(\overline{A})$$

 $= D(\overline{A}) + 2a_{\text{Pl}}^{2}$.
 $\Rightarrow L(\overline{B}) = L/\overline{A} - 2a_{\text{Pl}}^{2} = 0$ for $\overline{A}, \overline{B}$.
But, the same argument works for A and B, the original name metrics:
 $S(\overline{B}) = D(\overline{B}) + L(\overline{B})$
 $= S(\overline{A})$
 $= S(\overline{A})$
 $= S(\overline{A})$
 $= D(\overline{A}) + L(\overline{A})$
 $\Rightarrow L(\overline{B}) = L/\overline{A} - 2a_{\text{Pl}}^{2}$.
 T_{700} T_{70} T_{70}
 $= D(\overline{B}) < L(\overline{A})$
 $C(\overline{B}) < L(\overline{A})$
 $= C(\overline{A}) + L(\overline{A})$
 $= C(\overline{B}) < L(\overline{A})$
 $= C(\overline{A}) + L(\overline{A})$
 $= C(\overline{B}) < L(\overline{A})$
 $= C(\overline{A}) + L(\overline{A}) \leq n(n-1)a_{\text{Pl}}^{2}$
 $<= a_{\text{Pl}}^{2} > \frac{L(\overline{A})}{n(n-1)}$
There for, $L(\overline{B}) = L/\overline{A} - 2a_{\text{Pl}}^{2}$
 $\leq L(\overline{A}) - 2L(\overline{A})$
 $= L(\overline{A})(1 - 2a_{\text{Pl}}^{2})$
 $Re-label the matrix:
 $A^{(n)} = B$
 $\Rightarrow L(\overline{A}^{(n)}) \leq (1 - \frac{2}{n(n-1)})L(\overline{A}^{(n)}) \leq (1 - \frac{2}{n(n-1)})^{2}L(\overline{A}^{(n)})$.
 $= L(\overline{A}^{(n)}) \leq (1 - \frac{2}{n(n-1)})L(\overline{A}^{(n)}) \leq (1 - \frac{2}{n(n-1)})^{2}L(\overline{A}^{(n)})$.
[47]$

=> After k steps,
$$L(A^{(u)}) \leq \left(1 - \frac{2}{n(u-1)}\right)^{k} L(A^{(u)})$$

=> So therefor, $L(A^{(u)}) \rightarrow 0$ as $k \rightarrow \infty$.
And since $S(A^{(u)}) = D(A^{(u)}) + L(A^{(u)})$
 $= true(A^{2})$
 $\lim_{k \rightarrow \infty} \left(D(A^{(u)}) + L(A^{(u)})\right) = \lim_{k \rightarrow \infty} D(A^{(u)}) = true(A^{2}).$

5

What gurantees that
$$\lim_{k \to \infty} D(A^{(m)}) = true(A^2)$$

implies that $A^{(m)} \rightarrow (\lambda_{m})^{2}$

Idea Apply Gerschgorin's Theorem:
A^(u) and A have the same eigenvalues, and
$$L(A^{(u)}) = 0$$
.
Therfor the Gerschgorin disks of $A^{(u)}$ have radii going to 0
as well. Therfor, the eigenvalues of $A^{(u)}$, and therefor
A, are the limit of the diagonal of $A^{(u)}$.

What about the rate of convergence?
We showed that
$$L(A^{(un)}) \leq (1 - \frac{2}{n(n-1)})^{k} L(A^{(0)})$$

if $n = 1000$, $1 - \frac{2}{n(n-1)} = .99999799799...$
A if $k = 100$, $(1 - \frac{2}{n(n-1)})^{k} \sim .999799$
 $k = 10000$, $()^{k} \sim .98$

Real-life convergence is often much fuster than indicated in the proof.

Due finit note:
Jacuti's Algorithm can be terminated when
$$L(A^{(h)}) \in e$$

 $\Rightarrow A^{(h)} = \frac{R^{h}(r)}{R} \cdots \frac{R^{h}(q)}{R} \land \frac{R^{h}(q)}{R} \cdots \frac{R^{h}(q)}{R}$
 $\approx diagonal$
 $\Rightarrow A = \frac{R}{R} A^{(h)} \frac{R}{R}$
 $r = diagonal R diagonalizes A.
 $-7 R$ is the matrix of enginerations
of A (approximate engineration).
 $\Rightarrow R^{(h)}$ has engineration (approximation) of
 $a = 4 Le diagonal$
This means that Jacobi algorithm computes all eigenvalues
and eigenvector at the same time.
Topics on HWH
 $-$ matrix and vector norms
 $-$ watrix and vector norms
 $-$ watrix condition numbers
 $-$ least spheres
 $- R = R + R + R^{(h)} + R^{($$