April 2, 2020
Numerical Analysis
HW 4 will be reland at 12 am Monday April 6 due LIam Tuesday April 7
Content: everything between HW3 and Jacobi's Method lie. lecture on Teresday March 31).

Jacobi's Method
If A is real symmetric 2×2 matrix:
Then $A=V D V^{\top}$ when V is an orthogonal matrix

$$
\begin{aligned}
\Rightarrow \quad V & =\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right) \\
D & =\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & x_{2}
\end{array}\right) \\
& \text { elgenvalus of } A .
\end{aligned}
$$

If $A=\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$, compute q wing a, b, d to diagonalize A.
If A is real symmetric $n \times n$ matrix, then use this idea to zeroat off-dingonal elements.

$B=R^{p q}(\varphi)^{\top} A R^{p q}(\varphi)$ has elements $a_{p q}=a_{q p}=0 \quad$ if φ was computed using clements $a_{p p}$, $a_{p q}$, $a_{q 9}$

Jacobi's Algorithm
Apply a sequence \& $R\left(\varphi_{k}\right)$'s to A that zero out all off-diagoal elements.

Qustuin: Do elements that wen git to zee stay zero forever in the Jacoli method? No

Idea behind convergence: Every $\underbrace{\text { Jacobi rotation mons }}_{\text {apply } R^{\top} \text { and } R}$ some "mass" of the matrix apply R^{\top} and R form off-diagounal positions to diagonal positions.

What can we say about the convergence of Jacobites Method?
First a Lemma:
Lemma: If R is an orthogonal transformation, then

$$
\|A\|_{F}=\left\|R^{\top} A R\right\|_{F}
$$

Frobenius Norm

$$
\|A\|_{F}=\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

Proof: Let $B=R^{\top} A R$. Then A and B han the same eigenvalues, and

$$
\begin{aligned}
B^{2} & =\left(R^{\top} A R\right)\left(R^{\top} A R\right) \\
& =R^{\top} A^{2} R .
\end{aligned}
$$

$\Rightarrow A^{2}$ and B^{2} have the same eigenvalues, and then for $\operatorname{trane}\left(A^{2}\right)=\operatorname{tran}\left(B^{2}\right)$.
But $\|A\|_{F}^{2}=\operatorname{truce}\left(A^{\top} A\right)=\operatorname{true}(\underbrace{A A}_{A^{2}})=\operatorname{true}\left(B^{2}\right)=\|B\|_{F}^{2}$. (This was proven in Homework.) ${ }^{A^{2}}$

Some notation:
Split the Frobenius norm into two pieces:
Let $\|A\|_{F}^{2}=S(A)=\sum_{i, j}\left|a_{i j}\right|^{2}$
$D|A|=\sum_{i}\left|a_{i i}\right|^{2} \quad$ diagonal burt
$L(A)=\sum_{i \neq j}\left|a_{i j}\right|^{2} \quad$ off-diugonal part

$$
\Rightarrow \quad S(A)=D(A)+L(A)=\|A\|_{F}^{2} .
$$

Theorem Let $A^{(b)}$ be the $k^{\text {th }}$ iterate in the Jacobi Algorithm.
Then $\lim _{b \rightarrow \infty} L\left(A^{(h)}\right)=0$

$$
\lim _{h \rightarrow \infty} D\left(A^{(h)}\right)=\operatorname{truce}\left(A^{2}\right) . \quad \xi
$$

Proof: Let $a_{p q}$ be the off-diagonal element of A with the largest absolute value.
Let $B=R^{p q}(\varphi)^{\top} A R^{p q}(\varphi) \quad$ (a single Jacobi Rotation)
$\left.\frac{\text { Then }}{\left(\begin{array}{ll}b_{p p} & b_{p q} \\ b_{q p} & b_{q q}\end{array}\right)} \underset{\tilde{B}}{(-\sin \varphi} \begin{array}{c}\cos \varphi\end{array}\right) \frac{\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ a_{q p} & a_{q q}\end{array}\right)}{\left(\begin{array}{ll}a_{p p} & a_{p q} \\ a^{\prime}\end{array}\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi\end{array}\right)\right.}$ and dovit forget $b_{p q}=b_{q p}=0$. (by construction).
But from the lemma, $\|\tilde{B}\|_{F}^{2}=\left\|R^{\top} \tilde{A} R\right\|_{F}^{2}=\|\tilde{A}\|_{F}^{2}$.
\Rightarrow This implies that $b_{p p}^{2}+b_{q q}^{2}=a_{p p}{ }^{2}+a_{q 9}^{2}+2 a_{p q}{ }^{2}$.
Forthermow, $S(\tilde{B})=D(\tilde{B})+L(\tilde{B})$

$$
\begin{aligned}
& =S(\hat{A}) \\
& =D(\hat{A})+L(\hat{A})
\end{aligned}
$$

So this means that $D(\bar{B})=D(\tilde{A})+L(\tilde{A})$

$$
\begin{aligned}
&=B(\tilde{A})+2 a_{p q}^{2} . \\
& \Rightarrow \quad L(\tilde{B})=L(\tilde{A})-2 a_{p q}^{2} \quad=0 \quad \text { for } \hat{A}, \widehat{B} .
\end{aligned}
$$

But, the sam argument works for A and B, the original $n \times n$ matrix:

$$
\begin{aligned}
& S(B)=D(B)+\frac{L(B)}{\neq 0} \text { in general } \\
&=S(A) \\
&=D(A)+L(A) \\
& \Rightarrow \quad L(B)=L(A)-2 \underbrace{a_{p 7}^{2}}_{\uparrow>0} . \\
& \Rightarrow \quad \uparrow_{7 / 0} \\
&
\end{aligned}
$$

Continuing: Since $a_{p q}$ was the largest off diagonal element of A, we han that $L(A) \leq n(n-1) a_{p q}^{2}$

$$
\Leftrightarrow \quad a_{p q}^{2} \geqslant \frac{L(A)}{n(n-1)}
$$

Therefor, $L(B)=L(A)-2 a_{p q}^{2}$

$$
\begin{aligned}
& \leq L(A)-\frac{2 L(A)}{n(n-1)} \\
& =L(A)\left(1-\frac{2}{n(n-1)}\right)
\end{aligned}
$$

Re-label the matrix:

$$
\begin{aligned}
A^{(0)} & =A \\
A^{(1)} & =B \\
\Rightarrow \quad L\left(A^{(1)}\right) & \leq\left(1-\frac{2}{n(n-1)}\right) L\left(A^{(0)}\right) \\
\Rightarrow \quad L\left(A^{(2)}\right) & \leq\left(1-\frac{2}{n(n-1)}\right) L\left(A^{(0)}\right) \leq\left(1-\frac{2}{n(n-1)}\right)^{2} L\left(A^{(0)}\right) .
\end{aligned}
$$

\Rightarrow After k steps, $L\left(A^{(n)}\right) \leq \underbrace{\left(1-\frac{2}{n(n-1)}\right)^{k}}_{c 1} L\left(A^{(0)}\right)$
\Rightarrow So thenfor, $L\left(A^{(n)}\right) \rightarrow 0$ as $k \rightarrow \infty$.
And $\sin u$ e $\quad S\left(A^{(h)}\right)=D\left(A^{(w)}\right)+L\left(A^{(u)}\right)$

$$
\begin{gathered}
=\operatorname{tanc}\left(A^{2}\right) \\
\left.\lim _{k \rightarrow \infty}\left(D\left(A^{(n)}\right)+L / A^{(n)}\right)\right)=\lim _{k \rightarrow \infty} D\left(A^{(n)}\right)=\operatorname{true}\left(A^{2}\right) .
\end{gathered}
$$

What gurantees that $\lim _{k \rightarrow \infty} D\left(A^{(n)}\right)=$ true $\left(A^{2}\right)$ implies that $A^{(n)} \xrightarrow{\rightarrow}\left(\begin{array}{lll}\lambda_{1} & & \\ & & \\ & & \lambda_{n}\end{array}\right)$?

Idea Apply Gerschgorin's Theorm:
$A^{(n)}$ and A have the same eigenvalues, and $L\left(A^{(n)}\right) \neq 0$.
Thenfin the Gerschgorin disks of $A^{(k)}$ have radii going to O as well. Thenfor, the eigenvalues of $A^{(k)}$, and therefore A, are the limit of the dinjourel of $A^{(n)}$.

What about the rate of convergence?
We shourd that $L\left(A^{(n)}\right) \leq\left(1-\frac{2}{n(n-1)}\right)^{k} L\left(A^{(0)}\right)$

$$
\begin{aligned}
& \text { if } n=1000,1-\frac{2}{n(n-1)}=.99999799799 \ldots \\
& \text { A if } k=100,\left(1-\frac{2}{n(n-1)}\right)^{k} \sim .999799 \\
& k=10000,()^{k} \sim .98
\end{aligned}
$$

Real-life converguce is often mach foster than indicated in the proof.

One final note:
Jacobi's Alyorithn can be terminated when $L\left(A^{(n)}\right) \leq \epsilon$

$$
\begin{aligned}
\Rightarrow A^{(n)} & =\underbrace{R^{p q}\left(\varphi_{n}\right)^{\top} \cdots R^{p q}\left(\varphi_{1}\right)^{\top}}_{R^{\top}} A \underbrace{R^{p q}\left(\varphi_{1}\right) \cdots R^{p \varphi}\left(\varphi_{k}\right)}_{R} \\
& \approx \underbrace{\text { diagonal }} \\
\Rightarrow A & =\underbrace{R A^{(n)}}_{\uparrow} \underbrace{R^{\top}} \\
& \approx \text { diagonal } \quad R \text { diagonalizes } A .
\end{aligned}
$$

$\rightarrow R$ is the matrix of eigenuaters of A (approximate eigenvertas).
$\Rightarrow A^{(n)}$ has eigenvalues (appuximations of 1 on the dingond

This means that Jacobi algorithm computes all eigenvalues and eigenvectors at the same time.

Topics on HWL

- matrix and vector norms
- matrix condition number
- least squares
- Qr factorization
- Normal equations
- SVI factorization (pseudo-inverse)
- eigenvalue computations
- Gerschgorini The
- power method (w/shifts, inverse power moshed with
shifts)
(No questions on homework about Jacobins Algorithm).

