Apr:1 28, 2020
Numerical Analysis
Ordinary Diffescntio Equations:

Initial value problem (IVP)
Boundary Valve Problems

$$
\begin{aligned}
& y^{\prime \prime}+b y^{\prime}+c y=0 \\
& y(0)=y_{0} \quad, y(1)=y_{1}
\end{aligned}
$$

The numerical method, used for solving these two problems are very different. We will focus only on initial value problems.

The solution to $(*)$ can be written down formally as:

$$
y(t)=y_{0}+\int_{t_{0}}^{t} f(\tau, y(\tau)) d \tau \cdot\left(x^{*}\right)
$$

If f dron't depend on y, me can straight forwardly evaluate:

$$
\int_{t_{0}}^{t} f(\tau) d \tau
$$

If f does dipund on y, then we mast solve ($* *$) for y.

All method, for solving IVPs an merely approximating the formal solution in $(* *)$.

The local uniqueness of the solution to (x) is established by Picard's Thionm, se page 311 in the textbook. Basically, if f is continivas and bound id in a neighborhood of $\left(t_{0}, y_{0}\right)$ (numemer $f=f(t, y)$), then a unige solution exists in some neighborhood of $\left(t_{0}, y_{0}\right)$.

Another way of viewing numerical solutions to $(*)$ is to directly approximate the differential part:

For some small $h>0$,

$$
y^{\prime}(t) \approx \underbrace{\frac{y(t+h)-y(t)}{h}}_{\text {Finite Difference. }} \approx f(t, y(t))
$$

\Rightarrow Giving $y(t)$, to approximate $y(t+h)$ we write:

$$
\begin{aligned}
\frac{y(t+h)-y(t)}{h} & \approx f(t, y(t)) \\
\Rightarrow \quad y(t+h) \approx y(t) & +\underbrace{h \cdot f(t, y(t))} \quad(\text { compar with }(\neq *)) \\
& \approx \int_{t}^{t+h} f(\tau, y(\tau)) d \tau
\end{aligned}
$$

This scheme is called the Forward Euler Method.

Let's turn to Finite Differences for a bit:
(1) Approximat ion error
(2) Floating point round off error.

How your is the Forward Difference at upproximinting y^{\prime} in the presence of round-off error: sound off error,

$$
\begin{aligned}
& \frac{y(t+h)-y(t)}{h} \xrightarrow{f . p .} \frac{y(t+h)\left(1+\delta_{1}\right)-y(t)\left(1+\delta_{2}\right)}{h}\left|\delta_{i}\right|<\epsilon \uparrow \underset{\substack{\text { machine } \\
\text { precision }}}{ } \\
& =\frac{y(t+h)-y(t)}{h}+\frac{y(t+h) \delta_{1}-y(t) \delta_{2}}{h} \\
& \text { mIgnon the } \\
& \text { round-olf error } \\
& \text { in } t, h, t+h \text {. } \\
& =\frac{\left(y(t)+h y^{\prime}(t)+\frac{h^{2}}{2} y^{\prime \prime}(\xi)\right)-y(t)}{h}+\frac{y(t+h) \delta_{1}-y(t) \delta_{2}}{h} \\
& =y^{\prime}(t)+\frac{h}{2} y^{\prime \prime}(\xi)+\frac{y(t+h) \delta_{1}-y(t) \delta_{2}}{h}
\end{aligned}
$$

The total erne is given as $\operatorname{Err}(h)=y^{\prime}(t)-\frac{y(t+h)-y(t)}{h}$

$$
\begin{aligned}
& \Rightarrow\left|E_{r r}(h)\right| \leq\left|\frac{h}{2} y^{\prime \prime}(\xi)\right|+\left|\frac{y(t+h) \delta_{1}+y(t) \delta_{2}}{h}\right|
\end{aligned}
$$

To minimize $|\operatorname{Err}(h)|$, h must be chosen to balance then terms:

$$
h \sim \frac{\epsilon}{h} \quad \Rightarrow \quad h^{2} \sim \epsilon \quad \Rightarrow h \sim \sqrt{\epsilon}
$$

If $t \sim 10^{-16}$ (in double precision), then choosing $h \sim 10^{-8}$ minimizes the error, which is then \mathcal{A} size:

$$
\begin{array}{rlrl}
|\operatorname{Err}(h)| & \sim \theta(h)+\theta\left(\frac{6}{h}\right) & & \text { This is the best you can } \\
& \sim 10^{-8}+\frac{10^{-16}}{10^{-8}} \sim 10^{-8} & \begin{array}{l}
\text { hope for from a forward } \\
\text { difference approximation. }
\end{array} 3
\end{array}
$$

An alternation approximation, the centered difference, has the property that:

Just like bute, h must be chosen to balance these terms:

$$
\Rightarrow h^{2} \sim \frac{\epsilon}{h}
$$

$\Rightarrow h \sim \epsilon^{1 / 3}$ in order to minimize this total error.
So if $h \sim 10^{-5}$, than the total err is

$$
\begin{aligned}
\theta\left(h^{2}\right)+\theta\left(\frac{\epsilon}{n}\right) & \sim 10^{-10}+\frac{10^{-16}}{10^{-5}} \\
& \sim 10^{-10}+10^{-11} \\
& \sim 10^{-10}
\end{aligned}
$$

Richardson Extrapolation
What if we compute $\left.f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}=\varphi_{0} / h\right)$
for several value of h ? Can we use this estimate to get a better estimate of $f^{\prime}(x)$?
(Ignon noundooff error for now).
The centered differnue approximentin is $2^{\text {nd }}$-order accurate:

$$
\frac{f(x+h)-f(x-h)}{2 h}=\varphi_{0}(h)=f^{\prime}(x)+\frac{h^{2}}{6} f^{(3)}(x)+\theta\left(h^{4}\right)
$$

Compute $\varphi_{0}\left(\frac{n}{2}\right)=f^{\prime}(x)+\frac{1}{6}\left(\frac{h}{2}\right)^{2} f^{(3)}(x)+\theta\left(h^{4}\right)$

$$
=f^{\prime}(x)+\frac{1}{6} \frac{1}{4} h^{2} f^{(3)}(x)+\theta\left(h^{4}\right)
$$

Can we take a linear combination of $\varphi_{0}(h)$ and $\varphi_{0}\left(\frac{h}{2}\right)$ to kill the $\theta\left(h^{2}\right)$ term?

$$
\begin{aligned}
4 \cdot \varphi_{0}\left(\frac{h}{2}\right)-\varphi_{0}(h) & =4 f^{\prime}(x)+\frac{1}{6} h^{2} f^{(7)}(x)+\theta\left(h^{4}\right)-f^{\prime}(x)-\frac{1}{6} h^{2} f^{(3)}(x) \\
& =3 f^{\prime}(x)+\theta\left(h^{4}\right) \\
& =\theta\left(h^{4}\right)
\end{aligned}
$$

$$
\Rightarrow \quad f^{\prime}(x)=\frac{4 \cdot \varphi_{0}\left(\frac{h}{2}\right)-\varphi_{0}(h)}{3}+\theta\left(h^{4}\right) \quad \begin{aligned}
& 4^{\text {th }} \text { order } \\
& \text { approximation to }
\end{aligned}
$$

We only used two $2^{\text {nd }}$ order appaximation. $f^{\prime}(x)$.
to obtain a $4^{\text {th }}$ ord w one.
If the round off erose in $\left(x_{* *}\right)$ is $\theta\left(\frac{G}{h}\right)$, then h must le chosen to balance $h^{4} \sim \frac{t}{h}$
$\Rightarrow h \sim \underbrace{\epsilon^{1 / 5}}_{\sim 10^{-3}}$ minimizes the total err

$$
=\theta\left(h^{4}\right)+\theta\left(\frac{\epsilon}{n}\right) \sim 10^{-12}+\frac{10^{-10}}{10^{-3}} \sim 10^{-12}
$$

Richardson extrapolation can be repented several tines:

$$
\begin{aligned}
& \varphi_{1}(h) \frac{4 \varphi_{0}\left(\frac{n}{2}\right)-\varphi_{0}(h)}{3}=f^{\prime}(x)+\theta\left(h^{4}\right) \\
& \varphi_{1}\left(\frac{n}{2}\right)\left(\frac{4 \varphi_{0}\left(\frac{n}{4}\right)-\varphi_{0}\left(\frac{n}{2}\right)}{3}=f^{\prime}(x)+\theta\left(\frac{h^{4}}{16}\right)\right. \\
& \Rightarrow \frac{16 \varphi_{1}\left(\frac{n}{2}\right)-\varphi_{1}(h)}{15}=f^{\prime}(x)+\theta\left(h^{6}\right)
\end{aligned}
$$

then truncation eros ar specific to the original centered difference formula.

