May 7, 2020 Numerical Analysis

Last time: Analysis & one-step methods for solving y' = f(t,y(ts)) y(to) = yo Goul is to approximate y on the interval [to,T]. explicit All one-step methods as of the form: y_{k+1} = y_k + h Y(t_k, y_k, h). Definitions: • Consistent

Stiff equations: - System of initial value problems with the
Solutions having two different time scale.
- Ex:
$$y_1(t) = c_i \overline{c}^{100t} + c_i \overline{c}^{1/0}$$

Solutions different rates.

Stability Analysis
(onsider the model problem:

$$y' = \lambda y$$

Exact solution is $y(t) = C e^{\lambda t}$
 $\rightarrow 0$ iff $R(\lambda) \ge 0$.

If the rysic of stability is the ratio left
half-plane
$$IIIn(h)$$

then this means that for any A with $Re(A) < 0$, any
choic of how yields a stable subtain, i.e. $y_{L} = 0$.
Schemes of this type as called A-STABLE.
Example 3 Backward Euler.
Backward Euler replace
 $y(h) = y_0$
 $y(h) = y_0$
 $Tuplait Scheme.$
Apply Backward Euler to $y' = Ay$
 $=^{7}$ $y_{k+1} = y_{k+1} + h \cdot f(b_{k+1}, y_{k+1})$
 $Sola for $y_{k+1} = y_{k}$
 $y_{k+1} = h \cdot y_{k+1}$
 $y_{k+1} = h \cdot y_{k+1}$
 $y_{k+1} = h \cdot y_{k+1}$
 $for shift cynchins, Backward Euler is very popular.$
Region of stability is
 $\frac{1}{1-h\lambda} \le 1$ $z = 2 + 1 - 2$$

Goal: Conpute this matrix actor product fruit. Direct: O(N2) flops.

141

For
$$k: 0, ..., N-1$$
 (Assume $N = 2^{L}$).
 $\hat{f}_{k} = \sum_{k=0}^{N-1} \hat{f}_{k} w_{N}^{-LL} + \sum_{k=0}^{L} \hat{f}_{k} w_{N}^{-LL} + \sum_{k=0}^{L} \hat{f}_{k} w_{N}^{-LL} + \sum_{k=0}^{L} \hat{f}_{k} w_{N}^{-LL}$
 $= \sum_{k=0}^{N} \hat{f}_{2k} w_{N}^{-L} + \sum_{k=0}^{N/2} \hat{f}_{2k+1} w_{N}^{-2\pi i k (2k+1)}$
 $= \sum_{k=0}^{2\pi i k (2k)} + \sum_{k=0}^{N/2} \hat{f}_{2k+1} w_{N}^{-2\pi i k (2k+1)}/N$
 $= \sum_{k=0}^{2\pi i k (2k)} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$
 $= \frac{2\pi i k (2k)}{2} e^{2\pi i k (2k)}$

[5]

So
$$F_{N}\begin{pmatrix} f_{0}\\ F_{1}\\ F_{0} \end{pmatrix} = F_{N}\hat{f}$$

$$= \begin{pmatrix} F_{N/2} & F_{rean} + W_{N} & F_{N/2} & f_{abl} \\ F_{N/2} & f_{even} - W_{N} & F_{N/2} & f_{abl} \end{pmatrix}$$

$$= \begin{pmatrix} F_{N/2} & W_{N} & F_{N/2} & f_{abl} \\ F_{N/2} & F_{N/2} & W_{N} & F_{N/2} & f_{abl} \end{pmatrix}$$

$$= \begin{pmatrix} F_{N/2} & W_{N} & F_{N/2} \\ F_{N/2} & -W_{N} & F_{N/2} \end{pmatrix} \begin{pmatrix} f_{even} \\ F_{abl} \end{pmatrix}$$

$$= \begin{pmatrix} F_{N/2} & W_{N} & F_{N/2} \\ F_{N/2} & -W_{N} & F_{N/2} \end{pmatrix} \begin{pmatrix} f_{even} \\ f_{abl} \end{pmatrix}$$

$$= \begin{pmatrix} F_{N/2} & W_{N} & F_{N/2} \\ F_{N/2} & -W_{N} & F_{N/2} \end{pmatrix} \begin{pmatrix} f_{even} \\ f_{abl} \end{pmatrix}$$

$$= \begin{pmatrix} F_{N/2} & W_{N} & F_{N/2} \\ F_{N/2} & -W_{N} & F_{N/2} \end{pmatrix} \begin{pmatrix} f_{even} \\ f_{abl} \end{pmatrix}$$

$$= \begin{pmatrix} F_{N/2} & W_{N} & F_{N/2} \\ F_{N/2} & -W_{N} & F_{N/2} \end{pmatrix} \begin{pmatrix} f_{even} \\ f_{abl} \end{pmatrix}$$

$$= \begin{pmatrix} F_{N/2} & W_{N} & F_{N/2} \\ F_{N/2} & -W_{N} & F_{N/2} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & (M^{2})^{1} \\ f_{2} & 0 & F_{1} \\ F_{N/2} & f_{2} & 0 \\ F_{N/2} & 0 \\ F_{N$$

Two mportant facts: (+) FFT is an exact algorithm
which relies on algebraic properties
of
$$e^{2\pi i h l/N}$$
.
(2) The FFT is at the heart of
all digital signal processing in
electrical engineering.