Numerical Analysis
Last time: Analysis of one-step method, for solving

$$
\begin{aligned}
& y^{\prime}=f(t, y(t)) \\
& y\left(t_{0}\right)=y_{0}
\end{aligned}
$$

Goul is to approximate y on the interval $\left[t_{0}, T\right]$. explicit
All \vee one -step method, an of the form:

$$
y_{k+1}=y_{k}+h \psi\left(t_{k}, y_{k}, h\right)
$$

Definition: - Consistent

- Stable scheme
- Convergent

Stiff equations: - System of initul vale problems with the Solutions having two different time sculs.

$$
-E_{x}: y_{2}(t)=c_{1} e^{-100 t}+\frac{c_{2} e^{-t / 10}}{l}
$$

go to zoo at very different rates.

Stability Analysis
Consider the model problem:

$$
y^{\prime}=\lambda y
$$

Exact solution is $y(t)=c e^{\lambda t}$

$$
\rightarrow 0 \text { iff } R(\lambda)<0
$$

Disintive using (for example) the forward Euler method:

$$
\begin{aligned}
y_{k+1} & =y_{k}+h \cdot \lambda y_{k} \\
& =(1+h \lambda) y_{k} \\
& =(1+h \lambda)^{k+1} y_{0} \rightarrow 0 \quad \text { iff }|1+h \lambda|<1
\end{aligned}
$$

stability condition.
\Rightarrow In this example, $|1+h x|<1$ iff

Note: This analysis only makes $\operatorname{sen} x$ if $\operatorname{Re}(\lambda)<0$.

Example 2
Let $\quad \vec{y}^{\prime}(t)=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \vec{y}(t)$
Let the eiginvulus of A be

$$
\left.\begin{array}{l}
\lambda_{1}=-1+10 i \\
\lambda_{2}=-10-10 i
\end{array}\right\} \Rightarrow \begin{aligned}
& \text { This means that the } \\
& \text { solutions } y_{1}, y_{2} \text { an of }
\end{aligned}
$$ the form:

$$
y_{i}=c_{1 i} e^{\lambda_{1} t}+c_{2 i} e^{\lambda_{2} t}
$$

The following conditions most be mot for stability of Forward Euler:

$$
\begin{aligned}
&\left|1+h \lambda_{1}\right|<1 \Rightarrow|1+h(-1+10 i)|<1 \\
&\left|1+x \lambda_{2}\right|<1 \Rightarrow|1+h(-10-10 i)|<1 \\
& \Leftrightarrow(1-h)^{2}+100 h^{2}<1 \Rightarrow h<2 / 101 \text { what condition; } \\
&(1-10 h)^{2}+100 h^{2}<1 \Rightarrow h<\frac{1}{10} \text { the maximum } \\
& \text { step size. }
\end{aligned}
$$

If the regis of stability is the entin left half -plane

then this means that for any λ with $\operatorname{Re}(\lambda)<0$, any choices of $h>0$ yields a stable solution, ie. $y_{h} \rightarrow 0$. Schemes of this type an called A-stable.

Example 3 Backward Euhr.
Backward Euler splays

$$
\begin{array}{rlr}
y^{\prime}(t)=f(t, y(t)) \quad \text { with } \quad \frac{y_{k+1}-y_{k}}{h}=f\left(t_{k+1}, y_{k+1}\right) \\
y\left(t_{0}\right)=y_{0} & \Rightarrow y_{k+1}=y_{k}+h \cdot f\left(t_{k+1}, y_{k+1}\right) \\
& \text { Implicit Scheme. }
\end{array}
$$

Apply Backward Euler to $y^{\prime}=\lambda y$

$$
\Rightarrow \quad y_{k+1}=y_{k}+h \lambda y_{k+1}
$$

Sole for y_{k+1}

$$
\begin{aligned}
& y_{k+1}-h \lambda y_{k+1}=y_{k} \\
& y_{k+1}=\frac{1}{1-h x} y_{k} \\
&=\frac{1}{(1-h x)^{k+1}} y_{0}
\end{aligned}
$$

For stiff equations, Backward Euler is veg popular
Region of stability is

$$
\frac{1}{|1-h \lambda|}<1 \quad \Leftrightarrow 1<|1-h \lambda|
$$

\Rightarrow A-stable
If $\operatorname{Re}(\lambda)<0$, then $|1-h \lambda|>1$ for any $h>0$.

Fusion Series
An) function $f \in L^{2}[0,2 \pi)$ and perinea can be written as: $\left.f(\theta)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n \theta}\right\}$ continuous Founir series.

$$
\Rightarrow a_{n}=\frac{1}{2 \pi}\left[\int_{0}^{n=-\infty} f(\theta) e^{-i n \theta} d \theta .\right)\left(\begin{array}{c}
\text { By the orthogonality } \\
\text { of } \left.e^{i n \theta}\right) \text {. }
\end{array}\right.
$$

Goal: Compute the coefficients a_{n}.
This intent his a periodic integrand.
Apply the trapezoidal woe to this integul:

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi} \frac{2 \pi}{N} \sum_{l=0}^{N-1} f\left(\theta_{l}\right) e^{-i n \theta_{l}}, \quad \theta_{l}=\frac{2 \pi}{N} \quad \begin{array}{l}
\text { equispuned point } \\
\text { on }(0,2 \pi)
\end{array} \\
& =\frac{1}{N} \sum_{l=0}^{N-1} f\left(\theta_{l}\right) e^{-2 \pi i n l / N}
\end{aligned}
$$

Define the Discrete Farrier Transform:

$$
\hat{f}_{k}=\sum_{l=0}^{N-1} e^{-2 \pi i k l / N} f_{l} \text { for } k=0, \ldots, N-1 \text {. }
$$

9

This is a matrix notion product:

$$
\left(\begin{array}{c}
\hat{f}_{0} \\
\hat{f}_{1} \\
\vdots \\
\hat{f}_{N-1}
\end{array}\right)=\left(\begin{array}{cccc}
\omega_{N}^{0} & \omega_{N}^{0} & \cdots & \omega_{N}^{0} \\
\omega_{N}^{0} & \omega_{N}^{N} & \omega_{N}^{2} & \cdots w_{N}^{\mu-1} \\
\vdots & & & \\
\omega_{N}^{N} & \omega_{N}^{N-1} & \cdots & \cdots
\end{array}\right)\left(\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{N-1}
\end{array}\right)
$$

Let $\omega_{N}=e^{-2 \pi i / N}$

$$
e^{-2 \pi i k l / N}=\omega_{N}^{k l}
$$

Goal: Compute this matrix uctir product fart.
Direct: $\theta\left(N^{2}\right)$ flops.

For $k: 0, \ldots, N-1$
(Assume $N=2^{L}$).

$$
\begin{aligned}
\hat{f}_{k} & =\sum_{l=0}^{N-1} f_{l} \omega_{N}^{-k l} \\
& =\sum_{l=l_{n}} f_{l} \omega_{N}^{-k l}+\sum_{l \text { odd }} f_{l} \omega_{N}^{-k l} \\
& =\sum_{l=0}^{N / 2} f_{2 l} \underbrace{\omega_{N}^{-k}(2 l)} \\
& +\sum_{l=0}^{N / 2} f_{2 l+1} \underbrace{\omega_{N}^{-k(2 l+1)}}_{e_{N}^{-2 \pi i k 2 l / N}} \\
& =e^{e^{-2 \pi i k l / N / 2}} \\
& =e^{\omega_{N / 2}}
\end{aligned}
$$

$$
=\underbrace{\sum_{l=0}^{N / 2} f_{2 l} w_{N / 2}^{k l}}+w_{N}^{k} \sum_{l=0}^{N / 2} f_{2 l+1} w_{N / 2}^{h l}
$$

Looks like a disiete Fourier Transform of size $\mathrm{N} / 2$ instead of N.

But k goes from $k=0, \ldots, N-1$
What happens to $\omega_{N / 2}^{k l}$ when $k>\frac{N}{2}-1$?

Let $h=\frac{N}{2}+j, \quad j \geqslant 0$

$$
\begin{aligned}
\omega_{N / 2}^{l l} & =e^{-2 \pi i(N / 2+j) \cdot l / N / 2} \\
& =e^{-2 \pi i l} \cdot e^{-2 \pi i j l / N / 2} \\
& =e^{-2 \pi i j l / N / 2}=\omega_{N / 2}^{j l}
\end{aligned}
$$

Let \bar{F}_{N} be the matrix of the disiate Fosses transform of size N.

So

$$
\begin{aligned}
& F_{N}\left(\begin{array}{l}
f_{0} \\
f_{1} \\
f_{N-1} \\
f_{N-1}
\end{array}\right)=F_{N} \vec{f} \\
& =\binom{F_{N / 2} \vec{f}_{\text {erin }}+W_{N} F_{N / 2} \vec{f}_{\text {odd }}}{F_{N / 2} \vec{f}_{\text {even }}-W_{N} F_{N / 2} \vec{f}_{\text {odd }}} \quad W_{N}=\left(\begin{array}{ll}
w_{N}^{0} \\
w_{N N}^{\prime} & \\
& \\
& \\
& \\
\omega^{N /-1}
\end{array}\right) \\
& \longrightarrow \text { Since } \omega_{N}^{N / 2+j}=-\omega_{N}^{j} \\
& =\left(\begin{array}{cc}
F_{N / 2} & W_{N} F_{N / 2} \\
F_{N / 2} & -W_{N} F_{N / 2}
\end{array}\right)\binom{\vec{f}_{\text {even }}}{\vec{f}_{\text {odd }}} \\
& =\left(\begin{array}{cc}
F_{N / 2} & W_{N} F_{N / 2} \\
F_{N / 2} & -W_{N} F_{N / 2}
\end{array}\right) \underbrace{\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & \vdots & \cdots \\
0 & 1 & 0 & 000 \\
0 & 0 & 1 & \cdots \\
\vdots
\end{array}\right)}_{\text {permutatuin matrix }} \stackrel{f}{f}
\end{aligned}
$$

The cost of doing this is

$$
\begin{aligned}
& \underbrace{2 \cdot \theta\left(\left(\frac{N}{2}\right)^{2}\right)}_{\begin{array}{c}
2 \text { DFTs of } \\
\text { size } N / 2
\end{array}}+\underbrace{2 \cdot \frac{N}{2}}_{\substack{\text { sealing by } \\
W_{N}}}+2 \cdot N / 2 \\
& =\underbrace{\theta\left(\frac{N^{2}}{2}\right)}+\theta(N) .
\end{aligned}
$$

Reduction in cost by functor of 2 .
Sivie are ussurad $N=2^{L}$, we can split $F_{N / 2}$ again, and repent the procedure \Rightarrow Then will be $\log _{2} N$ splittings.
\Rightarrow Eventually arrive at the cost $O\left(N \log _{2} N\right) \Rightarrow$ Fast Fourier Transform. (FFT).

Two important fucts:(t)FFT is an exact algorithm whin relies on alyebmiz properties of $e^{2 \pi i h l / N}$.
(2) The FFT is at the heart of all digital signal processing in electrical engineering.

