Statistics

Feb 24,2020

Example Inagui you have a single piece of
date
$$x_i$$
, which you helier is an observation
from a normal distribution: $N(j_{ij}, \sigma^{-})$.

 $for the interpreter interpreter $N(j_{ij}, \sigma^{-})$.

 $f(x_i) = \frac{1}{p_i} = \frac{1}{p_i} e^{-(X-p_i)^2/2\sigma^2}$. $\sum_{i=1}^{n} PDF = \frac{1}{p_i} N(p_i)\sigma^2$
 $excluded at x_i .

This is in ensemble the method of Maximum Likelihood.

If $X_{i,...}, X_n$ as a collection of random variables with
jaint PDF $f = f(x_{i...}, x_{i}; \theta)$.
 $f(x_i; \theta) = f(x_{i...}, x_{i}; \theta)$
 $= f(x_i; \theta) f(x_i; \theta) \dots f(x_i; \theta)$ (if $X_{i...}, X_n$)
 $= \frac{1}{p_i} f(x_i; \theta)$
Log-likelihood : $\log L(\theta) = L(\theta)$
 $= \frac{2}{p_i} \log f(x_i; \theta)$ if IID.$$

The Maximum Likelihood estimator
$$\hat{\theta}$$
 is the value of
 Θ which maximizes $J(\theta)$ or $J(\theta)$.
Notationally : $J(\theta) = \frac{1}{52\pi \sigma} e^{-(x_i - \mu)/2\sigma^2}$
 $\propto \frac{1}{\sigma} e^{-(x_i - \mu)/2\sigma^2}$

$$E_{Xample}: X_{i}, ..., X_{n} \sim Bernwlli(p) \quad IID \quad r.v.s$$

$$X_{i} = l \quad with \quad pnb \quad p$$

$$X_{i} = 0 \quad with \quad pnb \quad l-p \ .$$

$$=7 \quad max \quad p \quad at \quad X_{i} = l \qquad l-p$$

$$max \quad l-p \quad at \quad X_{i} = 0 \qquad l \qquad l-p$$

$$=7 \quad f(x_{j}p) = p^{x} (l-p)^{l-x}$$

$$=7 \quad f(x_{j}p) = \prod_{i=1}^{n} p^{x_{i}} (1-p)^{l-x_{i}}$$

$$= p^{2x_{i}} (1-p)^{n-2x_{i}}$$

$$\begin{split} \mathcal{L}(p) &= (\Xi X_{c}) \log p + (n - \Sigma X_{c}) \log (1-p), \\ = 7 \quad \text{Solve} \quad \mathcal{L}'(p) &= 0 \\ \mathcal{L}'(p) &= \frac{1}{P} \Sigma X_{c} - \frac{1}{1-p} (n - \Sigma X_{c}) &= 0 \\ = 7 \quad \bigcap_{n=1}^{\infty} \frac{1}{p} \Sigma X_{c} \, . \end{split}$$

$$Example : Led X_{1,m}, X_{n} \sim U(0, \theta) \quad 110.$$

$$f(x; \theta) = \begin{cases} y_{\theta} & \text{for } x \in (0, \theta) \\ 0 & \text{otherwise} \end{cases}$$

$$I(\theta) = \prod_{i=1}^{n} f(x_{i}; \theta) \qquad I(\theta) = \begin{cases} y_{\theta}^{n} & \text{if all } x_{i} \in \theta \\ 0 & \text{otherwise} \end{cases}, \quad i.e. \quad \text{if } \max x_{i} > \theta.$$

$$P(\theta) = \begin{cases} y_{\theta}^{n} & \text{if all } x_{i} \in \theta \\ 0 & \text{otherwise} \end{cases}, \quad i.e. \quad \text{if } \max x_{i} > \theta.$$

$$P(\theta) = \begin{cases} y_{\theta}^{n} & \text{otherwise} \\ 0 &$$

=>
$$D(f, g) \ge 0$$

 $D(f, f) = 0$
Write $D(\theta, \psi) = D(f(x;\theta), f(x;\psi))$.
We say that the statistical mode \exists is identifiable
if $\theta \ne \psi = D(\theta, \psi) \ge 0$.
Now, maximizing $L(\theta)$ is equivalent to maximizing
 $M(\theta) = \frac{1}{n} \underset{i}{\leq} \log \frac{f(x;\theta)}{f(x;\theta)}$
 $= \frac{1}{n} (L(\theta) - L(\theta_{i}))$
 $If \notin (\log \frac{f(x;\theta)}{f(x;\theta)}) = x \log M(\theta)$ convergent
Law of Lorge Numbers, as $n \Rightarrow \infty M(\theta)$ convergent
 $to = -\int \log \frac{f(x;\theta)}{f(x;\theta)} f(x;\theta_{i}) dx$
 $= -\int \log \frac{f(x;\theta)}{f(x;\theta)} f(x;\theta_{i}) dx$
 $= -D(\theta_{n}, \theta).$

So for large n,
$$M[\theta) = -D(\theta_{*}, \theta)$$
, which is
MEXIMIZED at $\theta = \theta_{*}$ since $-D(\theta_{*}, \theta_{*}) = 0$ and
 $-D(\theta_{*}, \theta) \perp 0$ for $\theta \neq \theta_{*}$.
 $= 7$ The maximizer of $M[\theta)$ to θ_{*} .
 $Equivariance$
Thus: Let $\tau = g[\theta)$ for a function of θ .
Let θ for the MLE of θ . Then $\hat{\tau} = g(\hat{\theta})$
is the MLE of τ .
Asymptotic Normality
Goal Show that $\hat{\theta} \rightarrow N[\theta_{*}, \hat{\tau}]$
 Def : Score function
 $s(x; \theta) = \frac{1}{2\theta} \log f(x; \theta)$
Fisher Information:
 $T(\theta) = Var(s(x; \theta))$

$$T_n(\theta) = Var\left(\sum_{i} S(X_i;\theta)\right)$$
 and since X_i
= $\sum_{i} Var\left(S(X_i;\theta)\right)$.

Compute the expected value of score function:

$$\mathbb{E} \left(\varsigma(x_{j}\theta) \right) = \int \frac{1}{2\theta} \log f(x_{j}\theta) - f(x_{j}\theta) dx$$

$$= \int \frac{1}{4f(x_{j}\theta)} \left(\frac{1}{2\theta} f(x_{j}\theta) - \int f(x_{j}\theta) dx$$

$$= \frac{1}{2\theta} \int_{-\theta}^{\theta} f(x_{j}\theta) \int_{-\theta}^{1} f(x_{j}\theta) dx$$

$$= \frac{1}{2\theta} \int_{-\theta}^{\theta} f(x_{j}\theta) \int_{-\theta}^{1} f(x_{j}\theta) \int$$

Asymptoti Confidence Internals Let $C = \left(\hat{\Theta} - \frac{2}{\alpha_{12}}\hat{S}e, \hat{\Theta} + \frac{2}{\alpha_{12}}\hat{S}e\right)$ then $P_{\rho}(\theta \in C) \rightarrow 1 - \alpha$ as $n \rightarrow \infty$. (Same exact proof as before, just rearrange terms). Optimality Suppose we want to estimate in from X1, ..., Xn ~ N(M, J) IID, $\hat{\mu} = MLE = \frac{1}{n} \sum X_{i}$ Let We could alternatively estimate in using in = median (Xin, Xin). It can be shown that $\operatorname{Jrr}(\hat{\mu} - \mu) \longrightarrow N(0, \sigma^2)$ $\operatorname{Im}\left(\widetilde{\mu}-\mu\right) \sim \operatorname{N}\left(O, \sigma^{2} \operatorname{T}_{2}\right).$ general, let T, V he two estimators of In U, each of which is asymptrotically normal: $\int n \left(T - \theta \right) \sim N(0, t^2)$ $\int n (U - \theta) \sim N(U, u^2)$ ARE (V,T) = asymptotic relation efficiency of U to T = t2/u2 = vatio of varianis.

Back to our example:

$$ARE(\tilde{p}, \tilde{p}) = \frac{Var(\tilde{p})}{Var(\tilde{p})} = \frac{\sigma^2}{2\sigma^2} = \frac{2}{11} \approx .63.$$
Thus: If θ is the MLE of θ , and θ
is any other asymptoticily normal estimator, thus

$$ARE(\tilde{\theta}, \hat{\theta}) \leq 1.$$

$$= 7 \text{ the MLE is efficient} \quad \text{or asymptoticily optimal}$$

$$= 7 \text{ the MLE is efficient} \quad \text{or asymptoticily optimal}$$

$$= 7 \text{ the MLE is efficient} \quad \text{or asymptotic Variance.}$$

$$Multiparameter Models$$

$$Extend to module with serveral parameters.$$

$$Let \theta = (\theta_{1}, ..., \theta_{u}) , \text{ and lat}$$

$$= (\theta_{1}, ..., \theta_{u}) \text{ for the MLE, circled the system of equations}$$

$$= \frac{\delta}{\partial \theta_{1}} I(\theta) = 0 \quad \text{system of equations}$$

$$= \frac{\delta}{\partial \theta_{u}} I(\theta) = 0 \quad \text{system of the variance}.$$

$$Let us also define H_{1}u = \frac{3^2 l}{3\theta_{1}} \theta_{u}$$

$$Fisher Information Matrix:$$

$$I_n(\theta) = -\begin{pmatrix} E(H_{in}) & \cdots & E(H_{in}) \\ E(H_{21}) & & \vdots \\ \vdots & & \vdots \\ E(H_{n1}) & & E(H_{nn}) \end{pmatrix}$$

and
$$J_n = J_n^{-1}$$
. (Question for home: why does $J_n = X_n^{-1}$.).

The Under the same regularity conditions on
$$f$$

as before,
 $\hat{\theta} - \theta \approx N(\theta, J_n)$.
[this is a k-dimensional vector.

And firthermon if Og is the jth component of O,

they

$$\frac{\hat{\theta}_{j} - \theta_{j}}{\hat{s}_{j}} \sim N(0, 1)$$

when $\hat{se}_{j}^{2} = J_{n}(j,j)$ and $Cov(\hat{\theta}_{j},\hat{\theta}_{k}) \simeq J_{n}(j,k)$.