March 10,2021

Statistics

Maximum Likelihood Estimator:
Fruit "the wat likely" estimate of a prometic

$$\theta$$
, $\theta = T(X_{2,...,}X_{n})$.
Some function of the data, called a
statistic
Question: Does T use as much information as possible?
Iden A sufficiency:
Def Let the joint density denotion of $X_{1...,}X_{n}$,
i.e. the likelihood, be $f = f(X_{1...,}X_{n}]\theta$.
Lets write $\overline{x} \exp \overline{g}$ if $f(\overline{x};\theta) = f(\overline{x}_{...,}X_{n}]\theta$.
Lets write $\overline{x} \exp \overline{g}$ if $f(\overline{x};\theta) = f(\overline{x}_{...,}X_{n}]\theta$.
C might depend on $\overline{x}, \overline{y}$, but not θ .
A statistic $T = T(\overline{x})$ is sofficient if the
likelihood function can be evaluated berowing only
that statistic."
Ex: Let $X_{1...,}X_{n} \sim Bernwilli(p)$ random variable.
 $\Rightarrow f(x;p) = p^{x}(1-p)^{1x}$.
 $=7 \int_{-1}^{-1} (p) = \prod_{i=1}^{n} p^{x_{i}}(1-p)^{1x_{i}} = p^{x_{i}}(1-p)^{n-\overline{x}x_{i}}$.

=7
$$\sum \sum \sum \chi_{c}$$
 is sufficient since $J(p) = p^{5} (+p)^{n-5}$.

 $a \operatorname{statistic}$
 $Ex^{i} = X_{1,...,} X_{n} \sim \operatorname{IID} = N/\mu_{n} \sigma^{n}$
 $f(\tilde{x}_{j,\mu}, \sigma^{2}) = J(\mu_{n}, \sigma^{n})$
 $= \left(\frac{1}{12\pi\sigma}\right)^{n} e^{-\frac{1}{2\sigma^{2}}\sum(X_{c}, -\pi)^{2}} \cdots e^{-(X_{n}, -\pi)^{2}/t_{c}\sigma^{2}}$
 $= \left(\frac{1}{12\pi\sigma}\right)^{n} e^{-\frac{1}{2\sigma^{2}}\sum(X_{c}, -\pi)^{2}} \frac{1}{n} \xi x_{c}$
 $Expand \quad \sum (X_{c}, -\pi)^{2} = \sum (X_{c} - \bar{x} + \bar{x} - \mu)^{2}$
 $= \sum \left[(X_{c} - \bar{x})^{2} + 2(X_{c} - \bar{x})(\bar{X}, -\pi) + (\bar{X}, -\pi)^{2}\right]$
 $= \sum \left[(X_{c} - \bar{x})^{2} + 2(\bar{X}, -\pi)(\bar{X}, -\pi) + n(\bar{X}, -\pi)^{2}\right]$
 $= \sum (X_{c} - \bar{x})^{2} + 2(\bar{X}, -\pi)(\bar{X}, -\pi)^{2}$
 $= n S^{2} + n(\bar{X}, -\pi)^{2} + n(\bar{X}, -\pi)^{2}$
 $= n S^{2} + n(\bar{X}, -\pi)^{2}$
 $= n (\bar{X}, -\pi)^{2}$
 $= n (\bar{X}, -\pi)^{2}$
 $= 1 = (\bar{X}, -\pi)^{2}$ is a sufficient statistic.

Dyber sufficient statistists include:

$$T_{1} = (\overline{X}, \sqrt{S^{2}})$$

$$T_{2} = (\overline{X}, ..., \overline{X}_{n}) \quad \leftarrow \text{olwags a sufficient}$$

$$T_{3} = (\overline{X}, S^{2}, \overline{X}_{3}) \quad \leftarrow \text{sufficient}, \text{ but icd undent}.$$

Then T is minimal sufficient if

$$T(\vec{x}) = T(\vec{y})$$
 if and only if $\vec{x} \Rightarrow \vec{y}$.
Then (Factorization Theorem) T is sufficient 'if
and only if the exist two functions $g = g(t; \theta)$
and $h = h(\vec{x})$ such that
 $f(\vec{x}; \theta) = f(\theta) = g(T(\vec{x}), \theta) h(\vec{x})$.

$$If \quad f(\vec{x}; \theta) = J(\theta) = g(T, \theta) \quad h(\vec{x})$$

$$He \quad J(\theta) = \log g(T, \theta) + \log h(\vec{x})$$

=)
$$L'(\theta) = \frac{1}{g(T,\theta)} \frac{\lambda g}{\lambda \theta}$$

only dipends on T, θ

=) This means that the solution to
$$l'(\theta) = 0$$

only depends on $T =$) $\hat{\theta}$ can be written only
interms of T_{-} .

Alternation definition (but equivalent) from Casella & Beger:
T is sufficient for
$$\theta$$
 if the conditional distribution
 $A = X_{1,...,} X_n$ given T does not depend on θ .

Parametric hypothesis toting: partition parameter space
according to hypotheses
Null Hypothesis: Ho:
$$\Theta \in \Theta_0 \subset \Theta$$

Alternatic hypothesis: Hi: $\Theta \in \Theta_1 = \bigoplus \setminus \Theta_0$

Iden: Observe data
$$\vec{X}$$
, if $\vec{X} \subset \mathcal{R} \subset \mathcal{N}$
then reject Ho.
If \vec{X} is inconsistent with publicle orthogons assuming
the is true, then we reject Ho.

$$\frac{|\mathcal{R}_{chi} + \mathcal{H}_{c}|}{|\mathcal{H}_{chi} + \mathcal{H}_{c}|} \frac{|\mathcal{R}_{chi} + \mathcal{H}_{c}|}{|\mathcal{T}_{chi} + \mathcal{H}_{c}|} \frac{|\mathcal{R}_{chi} + \mathcal{H}_{c}|}{|\mathcal{R}_{chi} + \mathcal{R}_{chi} + \mathcal{R}_{chi}|} \frac{|\mathcal{R}_{chi} + \mathcal{R}_{chi}|}{|\mathcal{R}_{chi} + \mathcal{R}_{chi} + \mathcal{R}_{chi}|} \frac{|\mathcal{R}_{chi} + \mathcal{R}_{chi}|}{|\mathcal{R}_{chi} + \mathcal{R}_{chi} + \mathcal{R}_{chi}|} \frac{|\mathcal{R}_{chi} + \mathcal{R}_{chi}|}{|\mathcal{R}_{chi} + \mathcal{$$

$$\frac{P_{ower function}}{\beta(\theta)} = \frac{P_{o}(X \in R)}{F_{o}(X \in R)} \quad (x \in R) \quad (x \in R)$$

$$= \int_{R} f(x; \theta) \, dx.$$

The size of a test is

$$x = \sup_{\theta \in \Theta_0} \beta(\theta)$$
.

Types if hypotheses

$$\theta = \theta_0$$
: simple hypothesis
 $\theta = \theta_0$: composite hypothesis

Example:
$$X_{i,...,} X_{n}$$
 IID $N(\mu, \sigma^{2})$
 L_{known} .
 $H_{0} = \mu \ge 0$
 $H_{1} = \mu > 0$
 $G_{1} = (0, \infty)$

Pick a tot statistic:
$$T = T(\vec{X}) = \frac{1}{n} \sum X_c = \vec{X}$$
.
Reject the if $T > C$, i.e. $R = rejection region$
 $= \{(X_{1,n}, X_{n}) : T(X_{1,n}, X_{n}) > c\}$

$$P_{owcr} P(m) = \prod_{n}^{p} (\overline{x} > c)$$

$$= \prod_{n}^{p} (\overline{\overline{x}} - m) > \frac{c - m}{\sigma/m}$$

$$= \prod_{n}^{p} (\overline{\overline{x}} - m) > \frac{c - m}{\sigma/m}$$

$$= \prod_{n}^{p} (\overline{\overline{z}} > \frac{c - m}{\sigma/m}) = 1 - \overline{\Phi} (\frac{\overline{m} (c - m)}{\sigma})$$

Determine c band on your choin of
$$\alpha$$
.
 $\alpha = 1 - \overline{\Phi}\left(\frac{mc}{\sigma}\right) = c = \frac{\sigma}{m} \overline{\Phi}\left(1 - \alpha\right).$
 $\Rightarrow Reject H_{\sigma}$ when $T = \overline{X} > C$, i.e. when the data are unlikely if H_{\sigma} is actually true. [8]

The idea of a "most powerful" tot (for fixed x):
We want to reject the when the is true.
=> 50, if
$$\theta \in \Phi_i$$
, we want to veject the
as often as possible:
=> We want to maximize $\beta(\theta) = P_i(\vec{X} \in R)$
when $\theta \in \Phi_i$.
Note This is a contrast to the size, which is
the maximum power under the null hypothesis.
(which should be small.)
"Most powerful" tots often do not exist, or ar
virtually impossible to difermine.