Statistics
April) 28,2021

Density Estimation
Setup: Obsern data $X_{1}, \ldots X_{n} \sim F$, and the density is $\quad f=F^{\prime}$.
Goal: Estimate f using as for assumption as possible.
\Rightarrow Still a smoothing problem:

undrsmoothed estimate

$$
\rangle_{y}
$$

 oversmoothed

One possible measure of the error is the L^{2} error:

$$
\begin{aligned}
\text { Loss }=L & =\int(\hat{f}(x)-f(x))^{2} d x \\
& =\|\hat{f}-f\|^{2} \\
& =\underbrace{\|\hat{f}\|^{2}-2(\hat{f}, f)}_{J}+\|f\|^{2}=J+\|f\|^{2}=J+C . \\
(\hat{f}, f) & =\text { inner product of } \hat{f} \text { with } f \\
& =\int \hat{f}(x) f(x) d x \\
& =\int \hat{f}(x) d F(x) \\
& =\mathbb{E}(\hat{f}(x))
\end{aligned}
$$

Goal is to estimate J.

As before, denote by $\hat{f}_{(-i)}$ the estimator obtained by leaving out x_{i} :
Def: CV estimate of the risk:

$$
\hat{J}=\|\hat{f}\|^{2}-\frac{2}{n} \sum \hat{f}_{(i)}\left(x_{i}\right)
$$

Histograms
Assume we ar estimation f on $[0,1]$, ant $h=\frac{1}{m}$, then we have bins $B_{1}=[0, h), B_{2}=[h, 2 h), \ldots, B_{j}=[(j-1) h, j h)$.

Denote by $Y_{j}=\# X_{i}$'s in bin j.
$\hat{p}_{j}=Y_{j} / n . \leftarrow$ probabilitity of ending up in bin j

$$
\begin{aligned}
P_{j} & =\int_{B_{j}} f(x) d x \quad \leftarrow \operatorname{trve} \text { probubilif of landij in } \\
& =\mathbb{P}\left(x \in B_{j}\right) .
\end{aligned}
$$

Histogram estimator: $\quad \hat{f}(x)=\sum_{j=1}^{m} \frac{\hat{p}_{j}}{h_{j}} \mathbb{1}\left(x \in B_{j}\right)$.
Why \hat{p}_{j} ? $\hat{p}_{i} \hat{p}_{\sim} \sim f(x)$ tor
Why not just \hat{p}_{j} ?

$$
\mathbb{E}(\hat{f}(x))=\frac{\mathbb{E}\left(\hat{P}_{j}\right)}{h}=\frac{p_{j}}{h}=\frac{1}{h} \int_{B_{j}} f(x) d x \approx \frac{1}{h} f(x) \cdot h=f(x) .
$$

Thu $\mathbb{E}(\hat{f}(x))=\frac{P_{j}}{h}$ for $x \in B_{j}$

$$
\operatorname{Var}(\hat{f}(x))=\frac{p_{j}\left(1-p_{j}\right)}{n h^{2}}
$$

and the risk can be computed as:
The Assume that f^{\prime} is "absolutely continuous" and $\int\left(f^{\prime}\right)^{2}<\infty$, then

$$
R(\hat{f}, f)=\frac{h^{2}}{12} \int\left(f^{\prime}(x)\right)^{2} d x+\frac{1}{n h}+\theta\left(n^{2}\right)+\theta\left(\frac{1}{n}\right)
$$

and for fixed n, the minimum occurs at

$$
h_{*}=\frac{1}{n^{1 / 3}}\left(\frac{6}{\int f^{\prime^{2} d x}}\right)^{1 / 3} \sim \frac{1}{n^{1 / 3}} \quad \text { and }
$$

then $\quad R(\hat{f}, f) \sim C \frac{1}{n^{2 / 3}}$.
Remember: Since f is not known, minimize \hat{J} instead since it can actually be computed.

Kernel Density Estimator
If you had only one data point, $x_{ \pm}$, what would you do?

Idea: Place a local larmel at each data point, and sum:

How wide should the kernel be?
Def: Kernel dusity estimator:

$$
\begin{array}{ll}
\text { rel dusity estimator: } & \int k=1 \\
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} K\left(\frac{x-x_{i}}{n}\right) & \\
& \\
& \sigma_{k}^{2}=\int x^{2} k<0
\end{array}
$$

The If f is continues at x, and $h \rightarrow 0, n h \rightarrow \infty$, then $\hat{f}(x) \xrightarrow{\mathbb{P}} f(x)$:

$$
\lim _{n \rightarrow \infty} \mathbb{P}(|\hat{f}(x)-f(x)|>\varepsilon)=0
$$

Thu ${ }^{(6.28)}$ Let $R(x)=\mathbb{E}\left((f(x)-\hat{f}(x))^{2}\right)$ ha the risk at x. Then

$$
R(x)=\frac{1}{4} \sigma_{k}^{4} h^{4} f^{\prime \prime}(x)^{2}+\frac{f(x)}{n h} \int K^{2}(x) d x+\theta\left(\frac{1}{n}\right)+\theta\left(h^{6}\right) .
$$

Proof: $\mathbb{E}(\hat{f}(x))=\mathbb{E}\left(\frac{1}{n} \sum_{i} \frac{1}{h} K\left(\frac{x-x_{i}}{n}\right)\right)$

$$
\begin{aligned}
& =\mathbb{E}\left(\frac{1}{h} K\left(\frac{x-x_{i}}{h}\right)\right) \\
& =\frac{1}{h} \int K\left(\frac{x-t}{h}\right) f(t) d t \\
& =\int K(u) f(x-h u) d u \quad, \quad \begin{array}{l}
\text { expand } f \text { around } \\
h u=0 .
\end{array} \\
& =\int K(n)\left(f(x)-h y f^{\prime}(x)+\frac{h^{2} u^{2}}{2} f^{\prime \prime}(x)+\ldots\right) d u \\
& =f(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x) \underbrace{\int u^{2} K(u) d u}_{\sigma_{k}^{2}}+\ldots \quad \text { assuming } \\
& K i n \text { even. }
\end{aligned}
$$

$$
\Rightarrow b(a)=\mathbb{E}(\hat{f}(x)-f(x))=\frac{1}{2} h^{2} \sigma_{w}^{2} f^{\prime \prime}(u)+\theta\left(h^{4}\right)^{k}
$$

Similarly, $\operatorname{var}(\hat{f}(x))=\frac{f(x)}{n h} \int K^{2}(u) d u .+\theta\left(\frac{1}{n}\right)$.

$$
\Rightarrow \quad R=b \mid a s^{2}+\text { variance }
$$

Then for the optimal bandwidth,
sole. $\frac{d R}{d h}=0 \quad \Rightarrow \quad h \sim \frac{\sigma_{k}^{2}}{h^{1 / 5}}$

$$
\Rightarrow R \sim \theta\left(\frac{1}{n^{4 / 5}}\right)
$$

vs for the histogram $\because R \sim \theta\left(\frac{1}{n^{2 / 3}}\right)$
Note Assuming only that $\int\left(f^{\prime \prime}\right)^{2}<\infty$, the sate of $\frac{1}{n^{4 / 5}}$ is the hest that can be obtained (see Thy 6.31 in AoNPS.)

Adaption Methods Choose h locally dipendig on clesterig of data and other considerations.

Ex:
 uniformly
small h

Multivariate Version
Same mathematical idea as in the one-dimensional care. Ore option "to use what is known as a product kernel:

$$
K_{h}^{d}(\underbrace{\left(x_{1}, \ldots, x_{d}\right)}_{\vec{x}}=\prod_{j=1}^{d} \frac{1}{n_{j}} K\left(\frac{x_{j}-x_{j}^{\prime}}{n_{j}}\right)
$$

K_{n}^{d} mat satisfy hume porpertis.
thin $\hat{f}(\vec{x})=\frac{1}{n} \sum_{i=1}^{n} K_{n}^{d}\left(\vec{x}-\vec{x}_{i}\right)$

$$
=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{\prod_{j=1}} \frac{1}{h_{j}} K\left(\frac{x_{j}-x_{i j}}{h_{j}}\right)
$$

Risk can ha estimated in the same way using multierarinble Taylor series for f.
Curse of Dimensionality
If we want the risk $R \sim 0.1$ at $\vec{x}=0$ for $f \sim \operatorname{Normal}(0,1) \in \mathbb{R}^{d}$, using the optimal bundwidth then $n \sim c^{d}$:

d	n
1	4
2	19
4	223
8	43,700
9	187,000
10	842,000

Bootstrap (Ch. 8 in $A_{0} S$) ($\left.\operatorname{CoB} \begin{array}{l}10.1 .4 \\ 10.6 .5\end{array}\right) \quad\left(A_{0}\right.$ NPS Ch. 3).
Goal: Estimate standard eros and confide sets for statistics.
Outline: Gin $X_{1}, \ldots, X_{n} \sim F$, \quad statistic $~ T=g\left(X_{1}, \ldots, X_{n}\right)$, want $V_{a r_{F}}(T)$.
re depending on unknown distribution F.
Ex: $T=\bar{x}$
$\operatorname{Var}_{F}=\frac{\sigma^{2}}{n}$
if

$$
\begin{aligned}
\operatorname{var} x_{i} & =\sigma^{2} \quad \text { function of } F . \\
& =\int(x-\mu) d F(x)
\end{aligned}
$$

The ida of the bootstrap:
(1) Estimate $\operatorname{Var}_{F}(T)$ with $\operatorname{Var}_{\hat{F}}(T)$.

$$
\overbrace{\hat{F}}^{n} \text { put } 1 / n \text { mass at every } x_{i} \text {. }
$$

(2) USe simulation to approximate $\operatorname{Var}_{\hat{f}}(T)$.

In this example, step 2 is not waded because

$$
\operatorname{Var}_{\hat{F}}(T)=\frac{\hat{\sigma}^{2}}{n} \text { when } \hat{\sigma}^{2}=\frac{1}{n} \sum\left(X_{i}-\bar{x}\right)^{2} \text {. }
$$

What is simulation? Drawing samples from some distribution, and computing averages.
Ex: Draw Y_{i}, \ldots, Y_{m} from a distribution G, by the law of large numbers

$$
\bar{Y}=\frac{1}{m} \sum_{j=1}^{m} Y_{j} \xrightarrow{\mathbb{P}} \mathbb{E}(Y)=\int y d G(y) \quad \text { as } m \rightarrow \infty .
$$

Choosing in large enough means that $\bar{Y} \approx \mathbb{E}(Y)$, use this as an estimate for $\mathbb{E}(Y)$.
Also if h is some function with $\int h(y) d y<\infty$, then $\frac{1}{m} \sum h\left(Y_{j}\right) \xrightarrow{\mathbb{P}} \mathbb{E}(h(Y))=\int h(y) d G(y)$.

Ex: $\frac{1}{m} \sum\left(Y_{i}-\bar{Y}\right)^{2}=\frac{1}{m} \sum Y_{i}^{2}-\left(\frac{1}{m} \sum Y_{i}\right)^{2}$

$$
\begin{aligned}
\xrightarrow{\mathbb{P}} & \int y^{2} d G(y)-\left(\int y d G(y)\right) \\
= & \operatorname{Var}(Y) .
\end{aligned}
$$

Boot strap Variaine Estimate

If we have data X_{i}, but F is unknown, then estimate F with \hat{F}, and draw for \hat{F}.
\Rightarrow Draw $X_{1}^{*}, \ldots, X_{n}^{*}$ from $X_{1} \ldots X_{n}$ with replacement.
\Rightarrow Compute $T^{*}=g\left(X_{1}^{*}, \ldots X_{n}^{*}\right)$
Note Some of the X_{i}^{*} will he duplicates.
Variance Algorithm

Do $i=1, . ., m$
Draw $x_{1}^{*}, \ldots, x_{n}^{*}$ from \hat{F}
Compute $T_{i}^{*}=g\left(X_{1}^{*}, \ldots, x_{n}^{*}\right)$
COMPUTE $v_{\text {boot }}=\frac{1}{m} \sum_{j=1}^{m}\left(T_{j}^{*}-\bar{T}^{*}\right)^{2}$
$\begin{aligned} & \uparrow \\ & \begin{array}{l}\text { bootstrap estimate } \\ \text { of the variance }\end{array}\end{aligned} \quad \Rightarrow \hat{s e}=\sqrt{v_{\text {boot }}}$
We can use exact y the same algorithm to estimate the variance of median, mode, or any other integrable statistic. $\int g<\infty$.

Bootstrap Confidence Intervals
Method 1 If T is approximately normal, egg. an MLE, the T^{*} is also approximately normal (and so is vest)
\Rightarrow a $1-\alpha$ confidence interval for T is:

$$
\begin{aligned}
& C I=\left(T-z_{\alpha / 2} \hat{s}_{\text {bot }}, T+z_{\alpha / 2} \hat{s}_{\text {bout }}\right) \\
& \prod_{\text {action } T} \overbrace{\sqrt{v_{\text {boot }}}} \\
& \text { nom data }
\end{aligned}
$$

Method 3 Percentile Intervals (obvious iden)
Generate $T_{1}^{*}, \ldots, T_{m}^{*}$ using simulation, and let $T_{\alpha / 2}^{*}$ be the $k / 2$ percentile from $T_{1}^{*}, \ldots, T_{m}^{*}$

$$
\Rightarrow \quad C I=\left(T_{\alpha / 2}^{*}, T_{L_{\alpha / 2}}^{*}\right)
$$

Requins som justification, see appendix.

Numerically Findig the MLE
Often $l^{\prime}(\theta)=0$ cannot h soled analytionlly, $(l(\theta)=\log f(\theta))$. howares, we can solus it numsially, using Newtovis Method.

Expand l^{\prime} in a Taylor series about some guess θ°;

$$
l^{\prime}(\theta) \approx l^{\prime}\left(\theta^{0}\right)+l^{\prime \prime}\left(\theta^{0}\right)\left(\theta-\theta^{0}\right)
$$

at the MLE, $\hat{\theta}, \quad l^{\prime}(\hat{\theta})=0$

$$
\begin{aligned}
& \Rightarrow 0 \approx l^{\prime}\left(\theta^{0}\right)+l^{\prime \prime}\left(\theta^{0}\right)\left(\hat{\theta}-\theta^{0}\right) \\
& \Rightarrow \hat{\theta} \approx \theta^{0}-\frac{l^{\prime}\left(\theta^{0}\right)}{\ell^{\prime \prime}\left(\theta^{0}\right)}
\end{aligned}
$$

Iterate: $\theta^{j+1}=\theta^{j}-\frac{l^{\prime}\left(\theta^{j}\right)}{l^{\prime}\left(\theta^{j}\right)}$
Can show that if θ^{j} is "clos enough" to root, then $\quad\left|\theta^{j+1}-\hat{\theta}\right| \sim\left|\theta^{j}-\hat{\theta}\right|^{2}$
quadratic

convenance. | $\left\|\theta^{j}-\hat{\theta}\right\|$ | $\left\|\theta^{j 5-1} \hat{\theta}\right\|$ |
| :---: | :---: |
| 10^{-1} | 10^{-2} |
| 10^{-2} | 10^{-4} |
| 10^{-4} | 10^{-8} |
| 10^{-8} | 10^{-16} |

Notes
(1) θ° can usually be estimated by the method of moments estimator.
(2) $l^{\prime \prime}$ must in computed or approximated.

In the multivariate care, $\hat{\theta}=\left(\hat{\theta}_{1}, . . \hat{\theta}_{k}\right) \quad H=$ Hessian and

$$
l^{\prime}(\vec{\theta})=\nabla l(\vec{\theta}) \approx\left(\begin{array}{c}
\frac{\partial l}{\partial \theta_{1}}\left(\theta_{1}^{0}\right) \\
\vdots \\
\frac{\partial l}{\partial \theta_{L}}\left(\theta_{L}^{0}\right)
\end{array}\right)+\left(\begin{array}{ccc}
\frac{\partial^{2} l}{\partial \theta_{1}^{2}} & \frac{\partial l}{\partial \theta_{1} \partial \theta_{l}} & \cdots \\
\vdots & & \ddots
\end{array}\right)\left(\begin{array}{c}
\theta_{1}-\theta_{i}^{0} \\
\theta_{2}-\theta_{2}^{0} \\
\vdots \\
\theta_{2}-\theta_{b}^{0}
\end{array}\right)
$$

At $\hat{\theta}, \nabla l(\hat{\theta})=\overrightarrow{0}$, so

$$
\vec{\theta}^{j+1}=\vec{\theta}^{j}-H^{-1}\left(\vec{\theta}^{j}\right)\left(\nabla l\left(\vec{\theta}^{j}\right)\right) \quad \text { Multivar(ite }
$$

Newton's Method.

Stochastic Processes

$$
x(t)=x_{t}
$$

$$
x_{t} \text { is a rive }
$$

A stochastic process $\left\{x_{t}: t \in T\right\}$ is a collection of random variable indued by t

- X_{t} tans values in th state space X
- T is the index sot (hie, $\mathbb{R}, \mathbb{N}, \ldots$)
- Ex include stock pries, went her, IID square $x_{1}, \ldots, x_{n} \ldots$
- Recall: for $x_{1} \ldots x_{n}$ the joint dinsity is gin by

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{3} \mid x_{1}, x_{2}\right) \cdots f\left(x_{n} \mid x_{1, \ldots,} x_{n-1}\right) \\
& =\prod_{i=1}^{n} f\left(x_{i} \mid \text { past iss }\right)
\end{aligned}
$$

Markov Chains
Def $\left\{x_{n}: n \in T\right\}$ is a Markov Chain if $\mathbb{P}\left(X_{n}=x \mid X_{0} \ldots, X_{n-1}\right)=\mathbb{P}\left(X_{n}=x \mid X_{n-1}\right)$ for all $n \in T$ and $x \in \mathcal{X}$.

$$
\begin{aligned}
& \Rightarrow f\left(x_{n} \mid x_{n-1} \ldots x_{n}\right)=f\left(x_{n} \mid x_{n-1}\right) \\
& \Rightarrow f\left(x_{1}, x_{2}, \ldots x_{n}\right)=f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{3} \mid x_{2}\right) \ldots f\left(x_{n} \mid x_{n-1}\right)
\end{aligned}
$$

Questions to answer:
(1) When does a MC achier "equilibrium"? Dues it atall?
(2) Estimate parameters controlling the MC
(3) Can we construct a MC that conveys to a specified equilibrium? ie, $X_{n} \leadsto \leadsto F$, some diann $\begin{gathered}\text { distributuin }\end{gathered}$

Transition Probability
Def: $\quad p_{i j}=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)$ an the transition probabilities.

If pis does not depend on n, called a homogeneous MC.
The matrix P with elements $P_{c j}=P_{c i j}$ is known as the transition matrix.

Two properties of the transition probabilities:
(1) $p_{i j} \geqslant 0$
(2) $\quad \sum_{j} p_{i j}=1 \quad\left(T_{y p O}\right.$ in book).

T Each row of P is a prob. mass function.

