Statistics

 \mathbb{D}

Goal is to estimate J.

As he for, denote by
$$\hat{f}_{(-i)}$$
 the estimator obtained by
leaving out χ_i :
Def: CV estimate of the risk:
 $\hat{f} = \|\hat{f}\|^2 - \frac{2}{n} \lesssim \hat{f}_{(-i)}(\chi_i)$

Histograms

~

Assume we are estimating
$$f$$
 on $[0,1]$, r , $h = \frac{1}{m}$,
then we have bins $B_i = [0,h)$, $B_2 = (h,2h)$, ..., $B_3 = [(j-1)h,jh]$.
Denote by $Y_j = \# X_i$'s in bin j .
 $\hat{p}_j = Y_j/n$. \in probability of ending up in bin j
 $p_j = \int_{B_j} f(x) dx \quad \leftarrow true probability of landing in
 $B_j = p(x \in B_j)$.
Histogram estimator: $\hat{f}(x) = \sum_{j=1}^{\infty} \frac{\hat{p}_j}{h} = f(x) dx \quad \propto true probability for the ending in
Why not just \hat{p}_j ? $\hat{f} = \prod_{h=1}^{\infty} f(x) dx \quad \approx \frac{1}{h} f(x) \cdot h = f(x)$.
 $E(\hat{f}(x)) = \frac{E(\hat{p}_j)}{h} = \frac{p_j}{h} \quad = t_h \int_{B_j} f(x) dx \quad \approx \frac{1}{h} f(x) \cdot h = f(x)$.$$

$$Var(\hat{f}(x)) = \frac{P_j(1-P_j)}{n h^2}$$
[2]

Then Assum that
$$f'$$
 is "absolutely continuous" and
 $\int (f')^2 \angle \infty$, then
 $R(f,f) = \frac{h^2}{12} \int (f'(x))^2 dx + \frac{1}{nh} + O(h^2) + O(\frac{1}{n})$
and for fixed n, the minimum occurs at
 $h_x = \frac{1}{12} \left(\frac{6}{2}\right)^{\frac{1}{3}} = \frac{1}{nd}$

-then
$$R(\hat{f},f) \sim C \frac{1}{n^{2}/3}$$
.

Then If f is continuous of x, and
$$h \neq 0$$
, $nh \Rightarrow \infty$,
then $\hat{f}(x) \stackrel{p}{\to} f(x)$:

$$\lim_{n \to \infty} P(|\hat{f}(x) - f(x)| > \varepsilon) = 0$$
Thus $P(x) \stackrel{p}{\to} E(|f(x) - \hat{f}(x)|^2)$ here the rist
at x. Then
 $P(x) = \frac{1}{4} \sigma_n^4 h^4 f''(x)^2 + \frac{f(x)}{nh} \int |\zeta_n^2(x)| dx + \theta(\frac{1}{n}) + \theta(h^4).$
Proof: $E(\hat{f}(x)) = E(\frac{1}{n} \frac{1}{2} \frac{1}{n} |\zeta(\frac{x-x}{n})|)$
 $= E(\frac{1}{h} |\zeta(\frac{x-t}{h})| f(t) dt$
 $= \int |\zeta(u)| f(x-hu) du$, $expand f around hu = 0$.
 $= \int |\zeta(u)| (f(x) - hurf(x) + \frac{h^2m^2}{2} f''(x) + ...) du$
 $= f(x) + \frac{1}{2}h^2 f''(x) \int u^4 |\zeta(u)| du + ...$
 $= f(x) + \frac{1}{2}h^2 f''(x) \int u^4 |\zeta(u)| du + ...$
 $= f(x) - f(x)| = \frac{1}{2}h^3 \sigma_n^4 f''(u) + \theta(h^4)$
Similarly, $Var(|\hat{f}(x)|) = \frac{f(x)}{nh} \int |\zeta^4(u)| du + \theta(\frac{1}{n})$.
 $\Rightarrow R = bis^4 + Variance$

Then for the optimical boundwidth,
solve
$$\frac{dR}{dh} = 0$$
 => $h \sim \frac{Gu^2}{n^{4}s}$
=> $R \sim O\left(\frac{1}{n^{4}s}\right)$
vs for the histogram $\sim R \sim O\left(\frac{1}{n^{4}s}\right)$
Note Assuming only that $\int (f'')^2 < \infty$, the rate
of $\frac{1}{n^{4}s}$ is the hest that can be obtained
(so Then 6.31 in AoNPS.)
Adaptic Methods (book h locally doendag on clustering of
 $\frac{1}{n^{4}s}$ $\frac{1}{n^{4}s}$

then
$$f(\vec{x}) = \frac{1}{n} \sum_{i=1}^{n} |K_{i}^{k}(\vec{x} - \vec{x}_{i})|$$

 $= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i!} \frac{1}{k!} |K_{i}(\frac{x_{3} - x_{0}}{k_{3}})|$

Risk can be estimated in the same my using multipler to fight series for f.
Curve & Dimensionality

The we want the risk $R \sim 0.1$ at $\vec{x} = 0$ for for for Normal $[0,1) \in \mathbb{R}^{d}$, using the optimul bundwidth then $n \sim d!$:
 $\frac{d}{1} = \frac{1}{4}$
 $\frac{2}{2} = \frac{19}{4}$
 $\frac{4}{2} = \frac{19}{187,000}$
 $\frac{1}{10} = \frac{19}{182,000}$

Reatstrap (Ch. $g = A_{0}S$) (Cob $\frac{10.14}{10.6.5}$) (ADNPS Ch.3).
Usal: Estimate standard cross and confidure sets for statistics.
Other is contained of cross and confidure sets for statistics.
Other is contained of variant dutribution f.
Ex: $T = \overline{X}$
 $Var_{g} = \frac{5^{1}}{n}$ if $VarX_{i} = 5^{1}$ (Larger) dF(x)

The idea of the bootstap:
() Estimate
$$Var_{F}(T)$$
 with $Var_{F}(T)$.
(F put X_{i} mass at every X_{i} .
(2) Use simulation to approximate $Var_{F}(T)$.
(3) Use simulation to approximate $Var_{F}(T)$.
(4) $Var_{F}(T) = \frac{G^{*}}{m}$ where $G^{*} = \frac{1}{m} \leq (X_{i} - \overline{X})^{2}$.
What is simulation? Drawing samples from some
distribution, and computing averages.
EX: Draw $Y_{i_{1},...,}Y_{m}$ from a distribution G , by
the law of large numbers
 $\overline{Y} = \frac{1}{m} \sum_{j=1}^{m} Y_{j} = \widehat{F} \in F(Y) = \int y dG(y)$ as $m \neq \infty$.
Choosing we large enough means that $\overline{P} \approx \overline{E}(Y)$,
use this as an estimate for $\overline{E}(Y)$.
Also if h is some function with $\int h(y) dy \, L^{\infty}$,
then $\frac{1}{m} \leq h(Y_{j}) = \frac{1}{m} \leq Y_{i}^{*} - (\frac{1}{m} \leq Y_{i})^{*}$
 $\overline{F}_{N} \int y^{*} dG(y) - (\int y dG(y))$
 $= Var(Y)$.

Bout strap Variance Estimate

If we have data
$$X_i$$
, but F is unknown, then
estimate F with \hat{F} , and draw from \hat{F} .
 \Rightarrow Draw $X_i^*, ..., X_m^*$ from $X_{i...}, X_m$ with replacement.
 \Rightarrow Compute $T^* = g(X_{i,...,}^*X_m^*)$
Note Some of the X_i^* will
he duplicates.

Do i=1,..., m
Draw X^{*}, ..., X^{*}_n from F
Compute T^{*}_i = g(X^{*}₁,...,X^{*})
COMPUTE
$$T_{boot} = \frac{1}{m} \sum_{j=1}^{p} (T^*_{j} - T^*)^2$$

 $\int_{bootstap} estimate >> se = JT_{boot}$
We can use exactly the same abortham to estimate
the variance of median, mode, or any other
integrable statistic. $\int g < \infty$.
Bootstap Confidance Intervals
Method 1 If T is approximately normal, e.g. an MLE.
the T^{*} is also approximately normal
(and so is Tboot)

1

actul T

from data

Method 3 Percentile Intervals (obvious iden)
Generate
$$T_1^*, ..., T_m^*$$
 using simulation,
and let $T_{a/2}^*$ he the $a/2$ percentile from $T_1^*, ..., T_m^*$
=7 $CI = (T_{a/2}^*, T_{a/2}^*)$
Requires some justification, see appendix.

$$\begin{aligned} \begin{array}{rcl} \mathrm{Therate}: & \theta^{3+1} &= \theta^{3} - \frac{\mathcal{L}'(\theta^{3})}{\mathcal{L}''(\theta^{3})} \\ \mathrm{Can} & \mathrm{show} & \mathrm{that} & \mathrm{if} & \theta^{3} & \mathrm{is} & \mathrm{clox} & \mathrm{enough}^{*} & \mathrm{to} & \mathrm{rood} \\ \mathrm{then} & \left[\theta^{3+1} - \hat{\theta} \right] & \sim \left[\theta^{3} - \hat{\theta} \right]^{2} \\ \mathrm{quadratic} & \left(\begin{array}{c} \frac{\left[\theta^{3} - \hat{\theta} \right] & \left[\theta^{3-1} \hat{\theta} \right]^{2}}{10^{2}} & \mathrm{Notes} \\ \mathrm{i} \theta^{2} & \mathrm{i} \theta^{2} & \mathrm{of} \\ \mathrm{i} \theta^{2} & \mathrm{i} \theta^{2} & \mathrm{of} \\ \mathrm{i} \theta^{2} & \mathrm{i} \theta^{3} & \mathrm{of} \\ \mathrm{i} \theta^{2} & \mathrm{of} \\ \mathrm{i} \\ \mathrm{i} \theta^{2} & \mathrm{of} \\ \mathrm{i} \theta^{2} & \mathrm{of} \\ \mathrm{i} \\ \mathrm{$$

 $\vec{\theta}^{j+1} = \vec{\theta}^{j} - \vec{H}(\vec{\theta}^{j}) \left(\nabla \mathcal{L}(\vec{\theta}^{j}) \right)$ Multivarinte Newton's Method.

Stochastic Processes
A stochastic process
$$\{X_{k}: t \in T\}$$
 is a collection
of random variables induced by t
- X_{k} takes values in the stake space X
- T is the index set (rie, R , N_{j-1})
- $Recall: for X_{1,1,2}X_{R}$ the joint divisity is given by
 $f(X_{1,1-1}X_{R}) = f(X_{1}) f(X_{2}|X_{1}) f(X_{3}|X_{1},X_{L}) \cdots f(X_{n}|X_{1-1},X_{n-1})$
= $\prod_{i=1}^{n} f(X_{i} | part i's)$

Markov Chains

$$\frac{Def}{X_n: neT} \quad is \quad a \quad Markov \quad Chaninif $P(X_n=x \mid X_{n-1}, X_{n-1}) = P(X_n=x \mid X_{n-1})$
for all $n \in T$ and $x \in X$.$$

=> $f(X_n | X_{n-1} ... X_n) = f(X_n | X_{n-r})$

 $= 7 \quad f(x_1, x_2, \dots, x_n) = f(x_1) \quad f(x_2 | x_1) \quad f(x_3 | x_2) \quad \dots \quad f(x_n | x_{n-1})$

(Ivestions to answer:
(I) When does a MC achieve "equilibrium"? Does it atall?
(I) Estimate parameters controlling the MC
(I) Can we construct a MC that converge to a specified equilibrium? i.e., Xn ~PF, some given (1)