Statistics
May 5,2021
Markov Chains:
Stochastic Process $\left\{x_{t}: t \in T\right\} \quad$ (assume that $T=\{1,2,3, \ldots$) with the property that $f\left(x_{t} \mid x_{\tau<t}\right)=f\left(x_{t} \mid x_{t-1}\right)$

$$
\Rightarrow \quad f\left(x_{1}, x_{2}, \ldots, x_{t}\right)=f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{3} \mid x_{2}\right) \cdots f\left(x_{1} \mid x_{t-1}\right) .
$$

State space: X (disseize for now)
"Stats": 1,2,...

transition probubilitis

$$
P_{i j}=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

If $p_{i j}$ dos not dipund on n for all i, j, the Markov chain is homogeneas.

The matrix P of transition probabilities is the transition matrix. $\quad P_{i j}=p_{i j}$.

Two porpertis (1) $p_{i j} \geqslant 0$
(2) $\quad \sum_{j} p_{i j}=1 \quad$ (Typo in book.)

T each row in P is a probability mass functuri.
n-step trunsituin probability: $\mathbb{P}\left(X_{m+n}=j \mid X_{m}=i\right)=p_{i j}(n)$
Theorm (Chayman-Kolmoyorov) The unstep transition powbabilitis satisfy:

$$
\begin{aligned}
& p_{i j}(m+n)=\sum_{k} p_{i n}(m) p_{u j}(n)=(P(m) P(n))_{i j} \\
\Rightarrow & P(2)=P \cdot P=P^{2} \\
\Rightarrow & P(3)=P^{3} \\
\Rightarrow & P(n)=P^{n}
\end{aligned}
$$

This means that if at time 0 , my probability of burg in state i is μ_{i}, and define

$$
\begin{aligned}
& \mu_{(0)}=\left(\mu_{1}^{(0)} \mu_{2}(0) \ldots \mu_{N}^{(0)}\right) \\
\Rightarrow \quad & \mu(1)=\mu(0) P
\end{aligned}
$$

$\Rightarrow \quad \mu(n)=\mu(0) P^{n} \leftarrow$ matrix viator multiplicutoin.
Question: As $n \rightarrow \infty$, is $\mu_{i}(n)>0$? or is $p_{i j}>0$ fir all i ?

Def: State i reach state j ($j i$ accessible from i) if $p_{i j}(n)>0$ for sone n

$$
\begin{aligned}
& \Rightarrow \quad i \rightarrow j \\
& \Rightarrow \quad \text { if } i \rightarrow j \text { and } j \rightarrow i, \begin{array}{c}
\text { then } i \leftrightarrow \\
\text { "communicate" }
\end{array}
\end{aligned}
$$

Thus
(1) $i \leftrightarrow i$
(2) $i \leftrightarrow j \Rightarrow j \Leftrightarrow i$
(3) $i \leftrightarrow j$ and $j \leftrightarrow k$ then $i \leftrightarrow k$.
(4) The state space X can be written as a disjoint union of classes $x=x_{1} \cup x_{2} \cup \ldots$ when i, j communiente ff $i, j \in X_{k}$.

Def: If all states communicate, then the chain is irreducible,

Clod: st of states is closed if the chains enter but nous leas.

Cloned set with a single state: an absorbing state.
Recurent/persistant: $\mathbb{P}\left(X_{n}=i\right.$ for some $\left.n \geqslant 1 / X_{0}=i\right)=1$ state

Transient: else.

Stationarity π is a stationary (or invariant) distribution if $\pi=\pi P$.
$\Rightarrow \pi$ is a row elgen ucter of P

$$
\Rightarrow \quad P^{\top} \pi^{\top}=\pi^{\top}
$$

\Rightarrow with eiginulu 1 .

Idea: Dome X_{0} from π, a stationary distribution of P.
Next, daw $X_{1} \sim \pi P$.
Notationally: $\quad X_{1} \sim \mu_{1}=\mu_{0} P=\pi P=\pi$
\Rightarrow If $\quad X_{2} \sim \mu_{2}=\mu_{1} P=\mu_{0} P^{2}=\pi P=\pi$
\Rightarrow that $x_{2} \sim \pi$
When a chain has distribution π, it will foreur.
Def A Markov Chain hus limiting distributuñ π if $\quad P^{n} \rightarrow\left(\begin{array}{c}\pi \\ \pi \\ \vdots \\ \pi\end{array}\right)=\left(\begin{array}{cccc}\pi_{1} & \pi_{2} & \cdots & \pi_{N} \\ \vdots & & & \\ \pi_{1} & \pi_{2} & \cdots & \pi_{N}\end{array}\right)$

$$
\begin{aligned}
& \Rightarrow \mu_{0} P^{n}=\pi \\
&\left(\mu_{1}-\mu_{N}\right)\left(\begin{array}{ccc}
\pi_{1} & \cdots & \pi_{N} \\
\pi_{4} & & \vdots \\
\pi_{1} & & \pi_{N}
\end{array}\right)=\left(\begin{array}{lll}
\pi_{1} \sum \mu_{j} & \pi_{2} \sum \mu_{j} & \cdots
\end{array}\right) \\
&=\left(\begin{array}{llll}
\pi_{1} & \pi_{2} & \cdots & \pi_{N}
\end{array}\right) .
\end{aligned}
$$

Detailed Balance π satisfies detailed balance if for all ii

The If π satisfies detailed balance, then π is a stationary distribution.

Proof: Detailed balance says $\pi_{i} p_{i j}=p_{j i} \pi_{j}$
We mud to show that $\pi P=\pi$. The $j^{\text {th }}$ element

$$
\text { of } \pi P=(\pi P)_{j}=\sum_{k=1}^{N} \pi_{k} P_{k j}=\sum_{k=1}^{N} P_{j k} \pi_{j}=\pi_{j} \sum_{k=1}^{N} P_{j k}
$$

$$
=\pi_{j} .
$$

Markov Chain Monte Carlo (MCMC)
Goal: Estimate an integral $\mathbb{E}(h(x))=\int h(x) f(x) d x$.
Idea: Construct a Marker Chain X_{1}, X_{2}, \ldots
whore stationary distribution is f

$$
\Rightarrow \quad x_{n} \sim F=\int f
$$

Were specifyij π, and tying to find P such that $\pi=\pi P$.

If this can ba dove, then under certain assumption

$$
\frac{1}{N} \sum_{i=1}^{N} h\left(x_{i}\right) \xrightarrow{\mathbb{P}} \mathbb{E}(h(x))
$$

For example: Draw from posterior in Bayesian calculation: $f(\theta \mid x)=\frac{\mathcal{L}(\theta) f(\theta)}{C \longleftarrow} \int \mathcal{L}(\theta) f(\theta) d \theta$

Specific Algorithm Metropolis - Hastings.
Listed as one of top 10 algorithms of $20^{\text {th }}$ century. (along with FFT, FMM, QR, Fortran)

Goal: Draw sample form X with density f.
M-H Algorithm
(0) Choose x_{0} arbitmrily. Assuming that we han generated X_{0}, \ldots, X_{i} :
(1) Generate Y from density $q\left(y \mid X_{i}\right)$

$$
\begin{array}{ll}
\prod_{\text {proposal }}^{\text {candidate value }} & \text { e } q \text { is a density } \\
& \text { that is easy to draw } \\
& \text { from: proposal distributing } \\
& \text { Ex:q}(y) x) \sim N\left(x, \sigma^{2}\right) .
\end{array}
$$

(2) Evaluate $r=r\left(X_{i}, Y\right)$ when

$$
r(x, y)=\min \left\{\frac{f(y)}{f(x)} \frac{q(x \mid y)}{q(y \mid x)}, 1\right\}
$$

(3) Set $X_{i+1}=\left\{\begin{array}{lll}Y & \text { with probability } & r \\ X_{i} & \text { with probability } & 1-r\end{array}\right.$

Completely opaque algorithm, look at specific example first before understanding why it works.

Ex: Draw from Cauchy distribution $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$.
Take $g(y \mid x)=\frac{1}{\sqrt{2 \pi b}} e^{-(y-x)^{2} / 2 b^{2}}$.
So thin $r(x, y)=\min \left\{\frac{f(y)}{f(x)} \frac{q(x \mid y)}{q(y \mid x)}, 1\right\}$

$$
\begin{aligned}
& =\min \left\{\frac{1+x^{2}}{1+y^{2}} \frac{e^{-(x-y)^{2} / 2 b^{2}}}{e^{-(y-x)^{2} / 2 b^{2}}}, 1\right\} \\
& =\min \left\{\frac{1+x^{2}}{1+y^{2}}, 1\right\}
\end{aligned}
$$

So the alyorith seders to following:

$$
X_{i+1}= \begin{cases}Y \sim N\left(X_{i}, b^{2}\right) & \text { with probibilifgr}\left(x_{i}, Y\right) \\ X_{i} & \text { with prob. } 1-r\left(x_{i}, y\right)\end{cases}
$$

Note

Why does this algorithm work at all?
Short answer: We enforce detailed balance in the chain, therefor guaranteeing the existence of a stationary distribution.

Recall: $\quad p_{i j} \pi_{i}=p_{j i} \pi_{j}$
Contivius version of detailed balance:

$$
\begin{aligned}
& p_{\cdot j} \rightarrow p(x, y) \approx \mathbb{P}\left(x_{n+1}=y \mid x_{n}=x\right) \\
& \pi_{i} \rightarrow f(x) \approx \mathbb{P}\left(x_{n} \approx x\right)
\end{aligned}
$$

The function f is a stationary distributive if

$$
f(y)=\int p(x, y) f(x) d x
$$

\Rightarrow Detailed Balance then means that

$$
f(x) p(x, y)=f(y) p(y, x)
$$

If this equation holds, then just integrate each side to show that f is a stationary distribution.

Using the construction of the M-H alyor.thm, show that detailed balance is satisfied, and the fore f is the stationary distribution.

Consider x, y (ie, $x=X_{i}$, and $y=Y$, the proposal valu).

Either $f(x) q(y \mid x)<f(y) q(x \mid y)$
or $f(x) q(y \mid x)>f(y) q(x \mid y)$

Without loss of gunemily, assume that (*) holds. and we then han:

$$
\frac{f(y) q(x \mid y)}{f(x) q(y \mid x)}<1
$$

and therefore $r(x, y)=\frac{f(y)}{f(x)} \frac{q(x \mid y)}{g(y \mid x)}$.
(And obviously $r(y, x)=\min \{\underbrace{\frac{f(x) q(y \mid x)}{f(y) g(x \mid y)}}_{>1}, 1\}=1$.)
Next, compute the transition probabilities:
$p(x, y)=\mathbb{P}(x \rightarrow y)$ and requires that
(i) generate y
(ii) accept y

$$
\begin{aligned}
\Rightarrow p(x, y) & =q(y \mid x) \cdot r(x, y)=q(y \mid x) \cdot \frac{f(y)}{f(x)} \frac{q(x \mid y)}{q(y \mid x)} \\
& =\frac{f(y)}{f(x)} q(x \mid y) \\
\Rightarrow f(x) p(x, y) & =f(y) q(x \mid y)
\end{aligned}
$$

On the other hand, $p(y, x)=\mathbb{P}(y \rightarrow x)$ and sequins:
(i) generate x
(ii) accept x

$$
\Rightarrow p(y, x)=q(x \mid y) r(y, x)=q(x / y)
$$

And therfon $f(x) p(x, y)=f(y) p(y, x)$.
This is detailed balunce.

Monte Carlo mithods.

$$
\begin{aligned}
& =\int h(x) f(x) d x \approx \underbrace{\frac{1}{N} \sum_{j=1}^{N} h\left(x_{i}\right)}_{I} \text { whum } x_{i} \sim \text { sumpb } \\
& \text { foom } f
\end{aligned}
$$

