Statistics

Markov Chanis:  
Stachastic: Process 
$$\{X_k : k \in T\}$$
 (assume that  $T: \{1, 2, 3, ..., 5\}$ )  
with the paperty that  $f(X_k | X_{k+k}) = f(X_k | X_{k+1})$   
=7  $f(X_{k}, X_{k}, ..., X_k) = f(X_k) f(X_k | X_k) \cdots f(X_k | X_{k+1})$ .  
Stack space:  $\mathcal{X}$  (durick for new)  
"stack" :  $1, 2, ...$   
 $f_{Markov} Chanis i I = f(X_k) f(X_k | X_k) \cdots f(X_k | X_{k+1})$ .  
Stack space:  $\mathcal{X}$  (durick for new)  
"stack" :  $1, 2, ...$   
 $f_{Markov} Chanis i I = f(X_{k+1}) = f(X_{k+$ 

n-sty transition probability: 
$$P(X_{min} * j | X_n = c) = p_{ij}(n)$$
  
Theorem (Chapman-Kolmegerer) The unstep transition  
probabilities satisfy:  
 $P_{ij}(mnn) = \sum_{k} p_{ik}(m) P_{kj}(n) = (P(m) P(m))_{ij}$   
 $\Rightarrow P(2) = P \cdot P = P^2$   
 $\Rightarrow P(3) = P^3$   
 $\Rightarrow P(n) = P^n$   
This means that if at twin 0, my probability  
of may in stake is in  $m_i$ , and define  
 $p_{i}(n) = p_{i}(n)P$ ,  
 $\Rightarrow p_{i}(n) = p_{i}(n)P^{n}$  to matrix weber multiplication.  
Question: As  $n \to \infty$ , is  $p_{i}(n) \ge 0$ ? Or is  $p_{i} \ge 0$   
for all  $i^{2}$ .  
Def: stake is reached stake j (j is accessible from i)  
if  $p_{ij}(n) \ge 0$  for some  $n$   
 $\Rightarrow if i \to j$  and  $j \to i$ , then is in j

" communicate"

Stationarity 
$$\pi$$
 is a stationary (or invariant) distribution  
if  $\pi = \pi P$ .  
 $= \pi T$  is a now eigenvetor of  $P$   
 $= \pi T$   $= \pi T$   
 $= \pi T$  with eigenvalue 1.

Iden: Dow Xo from 
$$\overline{t}$$
, a stationary distribution of P.  
Next, draw  $X_{i} \sim \pi P$ .  
Notationally:  $X_{i} \sim \mu_{0} P = \pi P = \pi$   
 $\Rightarrow$  If  $X_{2} \sim \mu_{2} = \mu_{1} P = \mu_{0} P^{2} = \pi P = \pi$   
 $\Rightarrow$  that  $X_{2} \sim \pi$   
When a chain has distribution  $\pi$ , it will forear.  
Def A Markov Chain has limiting distribution  $\pi$   
if  $P^{n} \Rightarrow \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{N} \\ \vdots \\ \pi_{1} & \pi_{2} & \cdots & \pi_{N} \end{pmatrix}$   
 $\Rightarrow \mu_{0} P^{n} = \pi$   
 $I_{\mu_{1}} \sim \mu_{N} \begin{pmatrix} \pi_{1} & \cdots & \pi_{N} \\ \vdots \\ \pi_{1} & \pi_{N} \end{pmatrix} = \begin{pmatrix} \pi_{1} & \xi_{M} \\ \pi_{2} & \xi_{M} \\ \vdots \\ \pi_{N} & \pi_{N} \end{pmatrix}$ 

$$= \left( \operatorname{T}_{\mathcal{C}} \quad \operatorname{T}_{\mathcal{Z}} \quad \cdots \quad \operatorname{T}_{\mathcal{N}} \right) \,.$$

Detailed Balance T satisfies detailed balance if for all ij  $P(X_{n}=i)P(X_{n+i}=j|X_n=i)$   $P(X_{n+i}=j,X_n=i)$   $P(X_{n+i}=i,X_n=i)$ 

Thus If 
$$\pi$$
 satisfies detailed balance, then  
 $\pi$  is a stationary distribution.  
  
Proof: Detailed balance says  $\pi_i p_{ij} = p_{jc}\pi_j$   
We need to show that  $\pi P = \pi$ . The jth element  
 $d = \pi P = (\pi P)_j = \sum_{k=1}^{N} \pi_k p_{kj} = \sum_{k=1}^{N} p_{jk}\pi_j = \pi_j \sum_{k=1}^{N} p_{jk}$   
 $=\pi_j.$   
Markov Chain Monke Carlo (MCMC)  
Goal: Estimate an integral  $E(h(x)) = \int h(x) f(x) dx$ .  
Idea: Construct a Morkov Chain  $X_i, X_{i,n}$   
whose stationary distribution is  $f$   
 $=\sum X_n \sim F = \int f$   
Weire specify  $\pi_i$   
and trying to finid P  
Such that  $\pi = \pi P$ .

For example: Draw from posterior in Bayesian calculation:  $f(\theta|x) = \frac{f(\theta)}{C} \frac{f(\theta)}{C} \int f(\theta) f(\theta) d\theta$ 

Ex: Draw from Cauchy distribution 
$$f(x) = \frac{1}{T + x^2}$$
.  
Take  $q(y|x) = \frac{1}{y^{2T}b} e^{-(y-x)^2/2b^2}$ .  
So then  $r(xy) = \min\left\{\frac{f(y)}{F(x)}, \frac{q(x|y)}{q(y|x)}, 1\right\}$   
 $= \min\left\{\frac{1+x^2}{1+y^2}, \frac{e^{(x-y)^2/2b^2}}{e^{f(y-x)^2/2b^2}}, 1\right\}$   
 $= \min\left\{\frac{1+x^2}{1+y^2}, 1\right\}$ 

So the algorithe reduce to following:  

$$X_{i+1} = \begin{cases} Y \sim N(X_i, b^2) & \text{with probability } r(X_i, Y) \\ X_i & \text{with prob. } 1 - r(X_i, Y) \end{cases}$$



Why does this abjection work at all? Short anwer: We enforce ditailed balance in the chain, therefore guaranteeing the existence of a stationary distribution. [7]

Recall: PijTT= = PjiTij Continuing version of detailed bulance:  $P_{ij} \rightarrow p(x_{ij}) \approx P(x_{n+i} = y | X_n = x)$  $\pi_{i} \rightarrow f(x) \simeq IP(X_{n} \approx x).$ The function f is a stationary distribution if  $f(y) = \int p(x,y) f(x) dx$ => Detailed Balance then means that f(x) p(x,y) = f(y) p(y,x)If this equation holds, then just intgrate each side to show that f is a stationary distribution. Using the construction of the M-H algorithm, show that detailed balance is satisfied, and the for f is the stationary distribution. Consider x, y lie. x=Xi, and y=Y, the proposal value). Either f(x) q(y|x) < f(y) q(x|y) f(x)q(y|x) > f(y)q(x|y) $(\varkappa)$ 61

Without loss of generality, assume that (in) holds.  
and use then have:  

$$\frac{f(y)}{f(x)} \frac{q(x|y)}{q(y|x)} \geq 1$$
and therefore  $r(x,y) = \frac{f(y)}{f(x)} \frac{q(x|y)}{q(y|x)}$ .  
(And obviously  $r(y,x) = \min\left\{\frac{f(x)}{f(y)}\frac{q(x|y)}{q(x|y)}, 1\right\} - 1$ .)  
Next, compute the transition probabilities:  
 $p(xy) = P(x \rightarrow y)$  and requires that  
(i) generate y  
(ii) accept y  
 $\Rightarrow p(xy) = q(y|x) + r(x,y) = q(y|x) + \frac{f(y)}{f(x)} \frac{q(x|y)}{q(y|x)}$   
 $= \frac{f(y)}{f(x)} q(x|y)$   
 $\Rightarrow f(x) p(xy) = f(y) q(x|y)$   
On the other hands  $p(y,x) = P(y \rightarrow x)$  and requires:  
(i) generate x  
(ii) accept x

Monte Carlo methods "

$$= \int h(x) f(x) dx \approx \frac{1}{N} \sum_{j=1}^{N} h(x_i) \quad \text{when } X_i \sim \text{sampb}$$

$$F_{\text{form}} f$$

$$F_{\text{form}} f$$

$$F_{\text{form}} f$$

$$Var(I) \approx \frac{1}{N} = 3 \text{ st}(I) \sim \frac{1}{N}$$