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Abstract

We study the APPROXCOLORING(q, Q) problem: Given a graph G, decide whether χ(G) ≤
q or χ(G) ≥ Q. We present hardness results for this problem for any constants 3 ≤ q < Q.
For q ≥ 4, our result is based on Khot’s 2-to-1 label cover, which is conjectured to be NP-
hard [Khot02]. For q = 3, we base our hardness result on a certain ‘B< shaped’ variant of his
conjecture. Previously no hardness result was known for q = 3 and Q ≥ 6. At the heart of our
proof are tight bounds on generalized noise-stability quantities, which extend the recent work
of Mossel et al. [MOO05] and should have wider applicability.

1 Introduction

The approximate graph coloring problem, which we describe next, is one of a few classical opti-
mization problems whose approximability behavior is still quite mysterious, despite increasingly
complex techniques developed in the past 15 years. For an undirected graph G = (V, E), let χ(G)
be its chromatic number, i.e., the smallest number of colors needed to color the vertices of G with-
out monochromatic edges. Then the approximate graph coloring problem is defined as follows.

APPROXCOLORING(q, Q) : Given a graph G, decide between χ(G) ≤ q and χ(G) ≥ Q.
This problem also has a natural search variant, which can be stated as follows: given a graph G
with χ(G) ≤ q, color G with less than Q colors. It is easy to see that the search variant is not
easier than the original decision variant, and hence for the purpose of showing hardness results it
is enough to consider the decision variant.

It is easy to solve the problem APPROXCOLORING(2, Q) for any Q ≥ 3 in polynomial time as it
amounts to checking bipartiteness. The situation with APPROXCOLORING(3, Q) is much more in-
teresting, as there is a huge gap between the value of Q for which an efficient algorithm is known
and that for which a hardness result exists. Indeed, until not long ago, the best known polynomial-
time algorithm was due to Blum and Karger [9], who solve the problem for Q = Õ(n3/14) colors,
where n is the number of vertices and the Õ notation hides poly-logarithmic factors (as is often
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the case, their algorithm actually solves the search variant). Their work continues a long line of
research [37, 8, 27] and is based on a semi-definite relaxation. Very recently, Arora et al. [2] were
able to improve this to Q = O(n0.207) colors, and the constant in the exponent can possibly be
reduced even further if certain geometric conjectures are proven. However, there is some indica-
tion that this line of work is limited by Q = nδ for some fixed δ > 0, see [17]. In contrast, the
strongest known hardness result shows that the problem is NP-hard for Q = 5 [28, 23]. Thus,
the problem is open for all 5 < Q < O(n0.207). In this paper we prove a hardness result for any
constant (i.e., independent of n) value of Q. As we shall explain later, our hardness result is based
on the conjectured NP-hardness of certain instances of the label cover problem due to Khot [30].

The situation with APPROXCOLORING(q,Q) for small values q ≥ 4 is similar. The best known
algorithm, due to Halperin et al. [24], solves APPROXCOLORING(q, Q) for Q = Õ(nαq) where
0 < αq < 1 is some constant depending on q. For example, α4 ≈ 0.37. On the other hand, there
are several known NP-hardness results. One of the strongest is due to Khot [29], who improved
on an earlier result of Fürer [20] by showing that for any large enough constant q and Q = q

log q
25 ,

APPROXCOLORING(q, Q) is NP-hard. Notice that for any fixed q, Khot’s result, as well as all other
known hardness results, apply only up to some fixed Q. Our result holds for any Q > q ≥ 3.

Hardness Results. One of the most successful approaches to deriving hardness proofs, which is
also the one we shall take here, is by a reduction from a certain combinatorial problem known as
the label-cover problem [3]. The PCP theorem [5, 4] says that this problem is NP-hard. In the label-
cover problem, we are given an undirected graph and a number R. Each edge is associated with
a binary relation on {1, . . . , R} and we refer to it as a constraint. The goal is to label the vertices
with values from {1, . . . , R} such that the number of satisfied constraints is maximized, where a
constraint is satisfied if the labels on the two incident vertices satisfy the relation associated with
it.

Without going into the details of the reduction (these details are described in Section 4), we
remark that for our reduction to work, the label-cover instances we use must have constraints of
a very specific form. For example, we might require all constraints to be bijections, i.e., a binary
relation in which any labelling of one vertex determines the other, and vice versa. We call this
special case the 1↔1-label-cover. The precise definition of this and other special cases will appear
later.

Unfortunately, these special cases of the label-cover problem are not known to be NP-hard.
Nevertheless, in his seminal work [30] Khot conjectured that such problems are in fact NP-hard,
although the tools necessary to prove this conjecture seem to be beyond our current reach. This
conjecture has since been heavily scrutinized [36, 13, 22, 14], and so far there is no evidence against
the conjecture. This issue is currently one of the central topics in theoretical computer science.

Khot’s conjecture is known to imply many strong, and often tight, hardness results. Two exam-
ples are the NP-hardness of approximating the VERTEXCOVER problem to within factors below
2 [32], which is tight by a simple greedy algorithm, and the NP-hardness of approximating the
MAXCUT problem to within factors larger than roughly 0.878 [31], which is tight by the algorithm
of Goemans and Williamson [21]. Our result continues this line of work by showing that (variants
of) Khot’s conjecture imply strong hardness results for another fundamental problem – that of
approximate graph coloring. More specifically, we present three reductions, each from a different
special case of the label-cover problem. An exact description of the three reductions will be given
later. For now, we just state informally one implication of our reductions.

Theorem 1.1 (informal) If a certain special case of the label-cover problem is NP-hard, then for any Q >
3, APPROXCOLORING(3, Q) is NP-hard.
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Bounds on Bilinear Forms

At the heart of our hardness results are certain bounds on bilinear forms describing the correlation
under noise between two functions f, g : [q]n → R where [q] := {1, . . . , q}. Since we believe these
bounds might be useful elsewhere, we now describe them in some detail.

Let T be a symmetric Markov operator on [q] (equivalently, T is the random walk on a regular
undirected weighted graph on vertex set [q] possibly with self-loops). We study the expectation
Ex,y[f(x)g(y)] where x ∈ [q]n is chosen uniformly and y ∈ [q]n is obtained from x by applying T
to each coordinate independently. Using notation we introduce later, this expectation can also be
written as

〈f, T⊗ng〉 = Ex[f(x) · T⊗ng(x)]. (1)

We are interested in the case where T and q are fixed, and n tends to infinity. Our main technical
result provides tight bounds on the bilinear form 〈f, T⊗ng〉 for bounded functions f, g, in terms of
E[f ], E[g], and ρ, where ρ is the second largest eigenvalue in absolute value of T .

To motivate this result, consider the following concrete example. Take q = 2 and f : {0, 1}n →
{0, 1} satisfying E[f ] = 1/2 (i.e., f is balanced). Fix some ρ ∈ (0, 1), and let Tρ be the operator that
flips each bit with probability (1− ρ)/2,

Tρ = ρ

(
1 0
0 1

)
+ (1− ρ)

(
1
2

1
2

1
2

1
2

)
.

We would like to know how high the stability of a balanced Boolean function f can be, where
the stability of f (with parameter ρ) is defined as the probability that f(x) = f(y) where x is
chosen uniformly from {0, 1}n and y is obtained from x by flipping each bit independently with
probability (1− ρ)/2. It is easy to see that the stability of f can be written as

Pr
x,y

[f(x) = f(y)] = 2Ex,y[f(x)f(y)] = 2〈f, T⊗n
ρ f〉 (2)

and hence an upper bound on the stability of a balanced Boolean function would follow from an
upper bound on (1).

If the function f depends on just one coordinate of its input, say f(x1, . . . , xn) = x1, then its
stability is simply (1 + ρ)/2, and it can be shown that this is the highest possible for any balanced
function f . We consider such cases degenerate and instead study functions that do not depend
too strongly on any one coordinate of their input (this will be made precise soon). An example
of such a function is the majority function, whose value is 1 if and only if more than half of its
input bits are 1 (assume for simplicity n is odd). It can be shown that the stability of this function
approaches 1

2 + arcsin(ρ)/π as n goes to infinity. But is majority the most stable function among
those who do not depend too strongly on any one coordinate?

The results of [33] imply that the answer is essentially yes. In the work presented here we
generalize such stability statements to cases where T is a general reversible Markov operator (and
not just the specific operator defined above) and relax the assumptions on influences as discussed
later.

Functions with low influences. The notion of the influence of a variable on a function defined
in a product space [26] played a major role in recent developments in discrete mathematics, see
for example [34, 35, 19, 18, 11, 7, 12]. Consider the space [q]n equipped with the uniform measure.
Then the influence of the i’th variable on the function f : [q]n → R is defined by

Ii(f) := E[Varxi [f(x)|x1, . . . , xi−1, xi+1, . . . , xn]].
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In recent years, starting with [7, 11], an effort has been made to study properties of functions all of
whose variables have low influences. In addition to a natural mathematical interest in functions
that do not depend strongly on any one coordinate, the study of such functions is essential for
proofs of hardness of approximation results, see for example [16, 30, 32, 31].

Main Technical Result. Our main technical result is a bound on (1) for bounded functions f, g
that have no common influential coordinate. The upper and lower bounds are stated in terms
of inner products of the form 〈Fη, UρFν〉γ where γ denotes the standard Gaussian measure on R,
Fµ(s) = 1s<t is an indicator function where t is chosen so that Eγ [Fµ] = µ, and Uρ is the Ornstein-
Uhlenbeck operator, UρG(x) = Ey∼γ [G(ρx +

√
1− ρ2y)]. These inner products can be written as

certain double integrals, and we mention the easy bound 0 < 〈Fη, UρFν〉γ < min(η, ν) for all ν, η
and ρ strictly between 0 and 1.

Theorem 1.2 Let T be some fixed symmetric Markov operator on a finite state space [q] whose second
largest eigenvalue in absolute value is ρ = r(T ) < 1. Then for any ε > 0 there exists a δ > 0 such that if
f, g : [q]n → [0, 1] are two functions satisfying

min
(
Ii(f), Ii(g)

)
< δ

for all i, then it holds that

〈FE[f ], Uρ(1− F1−E[g])〉γ − ε ≤ 〈f, T⊗ng〉 ≤ 〈FE[f ], UρFE[g]〉γ + ε. (3)

Stated in the contrapositive, this theorem says that if for some two functions f, g, (1) deviates
from a certain range, then there must exist a coordinate i that is influential in both functions. The
fact that we obtain a common influential coordinate is crucial in our applications, as well as in a
recent application of Theorem 1.2 to the characterization of independent sets in graph powers [15].
We remark that for any T , the bounds in the theorem are essentially tight (see Appendix B).

Going back to our earlier example, consider a balanced function f : {0, 1}n → {0, 1} all of
whose influences are small. Applying the theorem with q = 2 and Tρ, and using (2), gives us
an upper bound of essentially 2〈F0.5, UρF0.5〉γ on the stability of f . A straightforward calculation
shows that this value equals 1

2 + arcsin(ρ)/π, and hence we obtain as a special case of our main
theorem that asymptotically, the majority function is the most stable among all balanced functions
with low influences.

As mentioned before, this special case is not new to our work. It was originally presented as
a conjecture in the work of [31] on the computational hardness of the MAXCUT problem, and has
since been proven by Mossel et al [33], who refer to it as the “majority is stablest theorem”. For the
proof, [33] developed a very powerful invariance principle. This principle allows one to translate
questions on low-influence functions in the discrete setting (such as the above question on {0, 1}n)
to corresponding questions in other spaces, and in particular Gaussian space. The advantage of
this is that one can then apply known (and powerful) results in Gaussian space (such as [10]).

Our proof of Theorem 1.2 also relies on this invariance principle, and can in fact be seen as an
extension of the techniques in [33]. Our theorem improves on the one from [33] in the following
two aspects:

• The analysis of [33] only considers a very particular noise operator known as the Beckner
operator. We extend this to more general noise operators that are given by an arbitrary
symmetric Markov operator. In the application to hardness of coloring we apply the result
to three different operators. We remark that our main theorem can be easily extended to
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reversible Markov operators, with the stationary distribution taking the place of the uniform
distribution.

• Perhaps more importantly, our Theorem 1.2 allows one to conclude about the existence of a
common influential coordinate. A more direct application of [33] only implies the existence
of an influential variable in one of the functions (in other words, one would have a max
instead of the min in the theorem). As mentioned above, this difference is crucial for our
application as well as to the recent results in [15].

Independent sets in graph powers

To demonstrate the usefulness of Theorem 1.2, let us consider a question in the study of inde-
pendent sets in graph powers. Let G = ([q], E) be a regular, connected, non-bipartite graph on q
vertices. Consider the graph Gn on vertex set [q]n in which vertices (x1, . . . , xn) and (y1, . . . , yn)
are connected if and only if xi is connected to yi in G for all i (this is known as the n-fold weak
product of G with itself). Let TG be the symmetric Markov operator corresponding to one step in
a random walk in G. It is easy to verify that the operator T⊗n

G corresponds to one step in Gn.
Let f, g : [q]n → {0, 1} be two Boolean functions, and think of them as being the indicator

functions of two subsets of [q]n. Then, the bilinear form in (1) gives the fraction of edges that are
spanned between these two subsets in the graph Gn. In particular, 〈f, T⊗n

G f〉 = 0 if and only if
f is the indicator function of an independent set in Gn. Using the lower bound in Theorem 1.2,
we obtain that for any µ > 0 there exists a δ > 0 such that any independent set of measure µ
(i.e., E[f ] = µ) must have at least one coordinate with influence at least δ. Less formally, this says
that any reasonably big independent set in graph powers must have some “structure” (namely, have an
influential coordinate). Our hardness result for approximate graph coloring uses Theorem 1.2 in a
similar fashion.

We remark that graph powers were studied in a similar context in [1], where a similar “struc-
ture” theorem was proved for the restricted case that the independent set has nearly maximal size.
Moreover, Theorem 1.2 was recently used in [15] to show that every independent set in a graph
power is contained (up to o(1)) in a nontrivial set described by a constant number of coordinates.

2 Preliminaries

2.1 Functions on the q-ary hypercube

Let [q] denote the set {0, . . . , q−1}. For an element x of [q]n write |x|a for the number of coordinates
k of x such that xk = a and |x| = ∑

a6=0 |x|a for the number of nonzero coordinates.
In this paper we are interested in functions from [q]n to R. We define an inner product on this

space by 〈f, g〉 = 1
qn

∑
x f(x)g(x). In our applications, we usually take q to be some constant (say,

3) and n to be large.

Definition 2.1 Let f : [q]n → R be a function. The influence of the i’th variable on f , denoted Ii(f) is
defined by

Ii(f) = E[Varxi [f(x)|x1, . . . , xi−1, xi+1, . . . , xn]]

where x1, . . . , xn are uniformly distributed.

Consider a sequence of vectors α0 = 1, α1, . . . , αq−1 ∈ Rq forming an orthonormal basis of Rq.
Equivalently, we can think of these vectors as functions from [q] to R. These vectors can be used
to form an orthonormal basis of the space of functions from [q]n to R, as follows.
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Definition 2.2 Let α0 = 1, α1, . . . , αq−1 be an orthonormal basis of Rq. For x ∈ [q]n, write αx ∈ Rqn for

αx1 ⊗ αx2 ⊗ · · · ⊗ αxn .

Equivalently, we can define αx as the function mapping y ∈ [q]n to αx1(y1)αx2(y2) · · ·αxn(yn).

Clearly, any function from [q]n to R can be written as a linear combination of αx for x ∈ [q]n.
This leads to the following definition.

Definition 2.3 For a function f : [q]n → R, define f̂(αx) = 〈f, αx〉 and notice that f =
∑

x f̂(αx)αx.

The following standard claim relates the influences of a function to its decomposition. Notice
that the claim holds for any choice of orthonormal basis α0, . . . , αq−1 as long as α0 = 1.

Claim 2.4 For any function f : [q]n → R and any i ∈ {1, . . . , n},

Ii(f) =
∑

x:xi 6=0

f̂2(αx).

Proof: Let us first fix the values of x1, . . . , xi−1, xi+1, . . . , xn. Then

Varxi [f ] = Varxi

[ ∑
y

f̂(αy)αy

]
= Varxi

[ ∑

y:yi 6=0

f̂(αy)αy

]
,

where the last equality follows from the fact that if yi = 0 then αy is a constant function of xi. If
yi 6= 0, then the expected value of αy with respect to xi is zero. Therefore,

Varxi

[ ∑

y:yi 6=0

f̂(αy)αy

]
= Exi





 ∑

y:yi 6=0

f̂(αy)αy




2
 = Exi


 ∑

y,z:yi 6=0,zi 6=0

f̂(αy)f̂(αz)αyαz


 .

Thus,

Ii(f) = Ex


 ∑

y,z:yi 6=0,zi 6=0

f̂(αy)f̂(αz)αyαz


 =

∑

y,z:yi 6=0,zi 6=0

f̂(αy)f̂(αz)Ex[αyαz] =
∑

y:yi 6=0

f̂2(αy),

as needed.

We now define the notion of low-level influence.

Definition 2.5 Let f : [q]n → R be a function, and let k ≤ n. The low-level influence of the i’th variable
on f is defined by

I≤k
i (f) =

∑

x:xi 6=0,|x|≤k

f̂2(αx).

It is easy to see that for any function f ,
∑

i

I≤k
i (f) =

∑

x:|x|≤k

f̂2(αx) |x| ≤ k
∑

x

f̂2(αx) = k‖f‖2
2.

In particular, for any function f obtaining values in [0, 1],
∑

i I
≤k
i (f) ≤ k. Moreover, let us mention

that I≤k
i is in fact independent of the particular choice of basis α0, α1, . . . , αq−1 as long as α0 = 1.

This follows by noting that I≤k
i is the squared length of the projection of f on the subspace spanned

by all αx with xi 6= 0, |x| ≤ k, and that this subspace can be equivalently defined in terms of tensor
products of α0 and α⊥0 .

There is a natural equivalence between [q]2n and [q2]n. As this equivalence is used often in this
paper, we introduce the following notation.
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Definition 2.6 For any x ∈ [q]2n we denote by x the element of [q2]n given by

x = ((x1, x2), . . . , (x2n−1, x2n)).

For any y ∈ [q2]n we denote by y the element of [q]2n given by

y = (y1,1, y1,2, y2,1, y2,2, . . . , yn,1, yn,2).

For a function f on [q]2n we denote by f the function on [q2]n defined by f(y) = f(y). Similarly, for a
function f on [q2]n we denote by f the function on [q]2n defined by f(x) = f(x).

Claim 2.7 For any function f : [q]2n → R, any i ∈ {1, . . . , n}, and any k ≥ 1,

I≤k
i (f) ≤ I≤2k

2i−1(f) + I≤2k
2i (f).

Proof: Fix some basis αx of [q]2n as above and let αx be the basis of [q2]n defined by αx(y) = αx(y).
Then, it is easy to see that f̂(αx) = f̂(αx). Hence,

I≤k
i (f) =

∑

x:xi 6=(0,0),|x|≤k

f̂
2
(αx) ≤

∑

x:x2i−1 6=0,|x|≤2k

f̂2(αx) +
∑

x:x2i 6=0,|x|≤2k

f̂2(αx) = I≤2k
2i−1(f) + I≤2k

2i (f)

where we used that |x| ≤ 2|x|.

For the following definition, recall that we say that a Markov operator T is symmetric if it is
reversible with respect to the uniform distribution, i.e., if the transition matrix representing T is
symmetric.

Definition 2.8 Let T be a symmetric Markov operator on [q]. Let 1 = λ0 ≥ λ1 ≥ λ2 ≥ · · · ≥ λq−1 be the
eigenvalues of T . We define r(T ) to be the second largest eigenvalue in absolute value, that is,

r(T ) = max{|λ1|, |λq−1|}.

For T as above, we may define a Markov operator T⊗n on [q]n in the standard way. Note that
if T is symmetric then T⊗n is also symmetric and r(T⊗n) = r(T ). If we choose α0, . . . , αq−1 to be
an orthonormal set of eigenvectors for T with corresponding eigenvalues λ0, . . . , λq−1 (so α0 = 1),
we see that

T⊗nαx =
(∏

a 6=0λ
|x|a
a

)
αx.

and hence
T⊗nf =

∑
x

(∏
a6=0λ

|x|a
a

)
f̂(αx)αx.

holds for any function f : [q]n → R.
We now describe two operators that we use in this paper. The first is the Beckner operator, Tρ.

For any ρ ∈ [− 1
q−1 , 1], it is defined by Tρ(x → x) = 1

q + (1− 1
q )ρ and Tρ(x → y) = 1

q (1− ρ) for any
x 6= y in [q]. It can be seen that Tρ is a Markov operator as in Definition 2.8 with λ1 = · · · = λq−1 = ρ
and hence r(Tρ) = |ρ|.

Another useful operator is the averaging operator, AS . For a subset S ⊆ {1, . . . , n}, it acts on
functions on [q]n by averaging over coordinates in S, namely,

AS(f) = ExS [f ].

Notice that the function AS(f) is independent of the coordinates in S.
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2.2 Functions in Gaussian space

We let γ denote the standard Gaussian measure on Rn with density (2π)−n/2e−‖x‖22/2. We denote
by Eγ the expected value with respect to γ and by 〈·, ·〉γ the inner product on L2(Rn, γ). Notice
that Eγ [f ] = 〈f,1〉γ where 1 is the constant 1 function. For ρ ∈ [−1, 1], we denote by Uρ the
Ornstein-Uhlenbeck operator, which acts on L2(R, γ) by

Uρf(x) = Ey∼γ [f(ρx +
√

1− ρ2y)].

Since for x, y ∼ γ we have that ρx +
√

1− ρ2y is also distributed according to the standard Gaus-
sian distribution, Ex∼γ [Uρf(x)] = Ex∼γ [f(x)].

Finally, for 0 < µ < 1, let Fµ : R → {0, 1} denote the function Fµ(x) = 1x<t where t is chosen
in such a way that Eγ [Fµ] = µ. One useful quantity that will appear later is 〈Fη, UρFν〉γ , which by
definition can also be written as

〈Fη, UρFν〉γ = Pr
x,y∼γ

[x < s and ρx +
√

1− ρ2y < t],

where s and t are such that Fη(x) = 1x<s and Fν(x) = 1x<t. It is not difficult to see that for any
ν, η > 0, and any ρ ∈ [−1, 1], it holds that 〈Fη, UρFν〉γ = 〈Fν , UρFη〉γ (say, since Uρ is self-adjoint)
and that

〈Fτ , UρFτ 〉γ ≤ 〈Fη, UρFν〉γ ≤ τ,

where τ = min(η, ν). Moreover, for all τ > 0 and ρ > −1 it holds that

〈Fτ , UρFτ 〉γ > 0.

3 An Inequality for Noise Operators

The main analytic result of the paper, Theorem 3.1, is a generalization of the result of [33]. It
shows that if the inner product of two functions f and g under some noise operator deviates from
a certain range then there must exist an index i such that the low-level influence of the ith variable
is large in both f and g. This range depends on the expected value of f and g, and on r(T ). Note
in particular that Theorem 3.1 implies Theorem 1.2.

Theorem 3.1 Let q be a fixed integer and let T be a symmetric Markov operator on [q] such that ρ =
r(T ) < 1. Then for any ε > 0 there exist δ > 0 and k ∈ N such that if f, g : [q]n → [0, 1] are two functions
satisfying

min
(
I≤k
i (f), I≤k

i (g)
)

< δ

for all i, then it holds that
〈f, T⊗ng〉 ≥ 〈Fµ, Uρ(1− F1−ν)〉γ − ε (4)

and
〈f, T⊗ng〉 ≤ 〈Fµ, UρFν〉γ + ε (5)

where µ = E[f ], ν = E[g].

Note that (4) follows from (5). Indeed, apply (5) to 1− g to obtain

〈f, T⊗n(1− g)〉 ≤ 〈Fµ, UρF1−ν〉γ + ε
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and then use

〈f, T⊗n(1− g)〉 = 〈f, 1〉 − 〈f, T⊗ng〉 = µ− 〈f, T⊗ng〉 = 〈Fµ, Uρ1〉γ − 〈f, T⊗ng〉.

From now on we focus on proving (5).
Following the approach of [33], the proof consists of two powerful techniques. The first is

an inequality by Christer Borell [10] on continuous Gaussian space. The second is an invariance
principle shown in [33] that allows us to translate our discrete question to the continuous Gaussian
space.

Definition 3.2 (Gaussian analogue of an operator) Let T be an operator as in Definition 2.8. We de-
fine its Gaussian analogue as the operator T̃ on L2(Rq−1, γ) given by

T̃ = Uλ1 ⊗ Uλ2 ⊗ · · · ⊗ Uλq−1 .

For example, the Gaussian analogue of Tρ is U
⊗(q−1)
ρ . We need the following powerful theorem by

Borell [10]. It says that the functions that maximize the inner product under the operator Uρ are
the indicator functions of half-spaces.

Theorem 3.3 (Borell [10]) Let f, g : Rn → [0, 1] be two functions and let µ = Eγ [f ], ν = Eγ [g]. Then

〈f, U⊗n
ρ g〉

γ
≤ 〈Fµ, UρFν〉γ .

The above theorem only applies to the Ornstein-Uhlenbeck operator. In the following corollary
we derive a similar statement for more general operators. The proof follows by writing a general
operator as a product of the Ornstein-Uhlenbeck operator and some other operator.

Corollary 3.4 Let f, g : R(q−1)n → [0, 1] be two functions and define µ = Eγ [f ], ν = Eγ [g]. Let T be an
operator as in Definition 2.8 and let ρ = r(T ). Then

〈f, T̃⊗ng〉γ ≤ 〈Fµ, UρFν〉γ .

Proof: For 1 ≤ i ≤ q − 1, let δi = λi/ρ. Note that |δi| ≤ 1 for all i. Let S be the operator defined by

S = Uδ1 ⊗ Uδ2 ⊗ · · · ⊗ Uδq−1 .

Then,
U⊗(q−1)

ρ S = UρUδ1 ⊗ · · · ⊗ UρUδq−1 = Uρδ1 ⊗ · · · ⊗ Uρδq−1 = T̃

(this is often called the semi-group property). It follows that T̃⊗n = U
⊗(q−1)n
ρ S⊗n. Since S⊗n is an

averaging operator, the function S⊗ng obtains values in [0, 1] and satisfies Eγ [S⊗ng] = Eγ [g]. Thus
the claim follows by applying Theorem 3.3 to the functions f and S⊗ng.

Definition 3.5 (Real analogue of a function) Let f : [q]n → R be a function with decomposition

f =
∑

f̂(αx)αx.

Consider the (q − 1)n variables z1
1 , . . . , z

1
q−1, . . . , z

n
1 , . . . , zn

q−1 and let Γx =
∏n

i=1,xi 6=0 zi
xi

. We define the
real analogue of f to be the function f̃ : Rn(q−1) → R given by

f̃ =
∑

f̂(αx)Γx.

9



Claim 3.6 For any two functions f, g : [q]n → R and operator T on [q]n,

〈f, g〉 = 〈f̃ , g̃〉γ
〈f, T⊗ng〉 = 〈f̃ , T̃⊗ng̃〉γ

where f̃ , g̃ denote the real analogues of f, g respectively and T̃ denotes the Gaussian analogue of T .

Proof: Both αx and Γx form an orthonormal set of functions hence both sides of the first equality
are ∑

x

f̂(αx)ĝ(αx).

For the second claim, notice that for every x, αx is an eigenvector of T⊗n and Γx is an eigenvector
of T̃⊗n and both correspond to the eigenvalue

∏
a 6=0λ

|x|a
a . Hence, both sides of the second equality

are ∑
x

(∏
a6=0λ

|x|a
a

)
f̂(αx)ĝ(αx).

Definition 3.7 For any function f with range R, define the function chop(f) as

chop(f)(x) =





f(x) if f(x) ∈ [0, 1]
0 if f(x) < 0
1 if f(x) > 1

The following theorem is proven in [33]. It shows that under certain conditions, if a function f
obtains values in [0, 1] then f̃ and chop(f̃) are close. Its proof is non-trivial and builds on the main
technical result of [33], a result that is known as an invariance principle. In essence, it shows that
the distribution of values obtained by f and that of values obtained by f̃ are close. In particular,
since f never deviates from [0, 1], it implies that f̃ rarely deviates from [0, 1] and hence f̃ and
chop(f̃) are close. See [33] for more details.

Theorem 3.8 ([33, Theorem 3.20]) There exists a function δMOO(η, ε) such that for any η < 1 and ε > 0
the following holds. For any function f : [q]n → [0, 1] such that

∀d
∑

x:|x|≥d

|f̂(αx)|2 ≤ ηd and ∀i Ii(f) < δMOO(η, ε),

it holds that
‖f̃ − chop(f̃)‖2 ≤ ε.

We are now ready to prove the first step in the proof of Theorem 3.1. It is here that we use the
invariance principle and Borell’s inequality.

Lemma 3.9 Let q be a fixed integer and let T be a symmetric Markov operator on [q] such that ρ = r(T ) <
1. Then for any ε > 0, η < 1, there exists a δ > 0 such that for any functions f, g : [q]n → [0, 1] satisfying

∀i max (Ii(f), Ii(g)) < δ

and
∀d

∑

x:|x|≥d

|f̂(αx)|2 ≤ ηd, ∀d
∑

x:|x|≥d

|ĝ(αx)|2 ≤ ηd,

it holds that
〈f, T⊗ng〉 ≤ 〈Fµ, UρFν〉γ + ε

where µ = E[f ], ν = E[g].
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Proof: Let µ′ = Eγ [chop(f̃)] and ν ′ = Eγ [chop(g̃)]. We note that 〈Fµ, UρFν〉γ is a uniformly contin-
uous function of µ and ν. Let ε1 be chosen such that if |µ− µ′| ≤ ε1 and |ν − ν ′| ≤ ε1 then it holds
that

|〈Fµ, UρFν〉γ − 〈Fµ′ , UρFν′〉γ | ≤ ε/2.

Let ε2 = min(ε/4, ε1) and let δ = δMOO(η, ε2) be the value given by Theorem 3.8. Then, using the
Cauchy-Schwartz inequality,

|µ′ − µ| = |Eγ [chop(f̃)− f̃ ]| = |〈chop(f̃)− f̃ ,1〉γ | ≤ ‖chop(f̃)− f̃‖2 ≤ ε2 ≤ ε1.

Similarly, we have |ν ′ − ν| ≤ ε1. Now,

〈f, T⊗ng〉 = 〈f̃ , T̃⊗ng̃〉γ (Claim 3.6)

= 〈chop(f̃), T̃⊗nchop(g̃)〉γ+

〈chop(f̃), T̃⊗n(g̃ − chop(g̃))〉γ + 〈f̃ − chop(f̃), T̃⊗ng̃〉γ
≤ 〈chop(f̃), T̃⊗nchop(g̃)〉γ + 2ε2

≤ 〈Fµ′ , UρFν′〉γ + 2ε2 (Corollary 3.4)
≤ 〈Fµ, UρFν〉γ + ε/2 + 2ε2 ≤ 〈Fµ, UρFν〉γ + ε

where the first inequality follows from the Cauchy-Schwartz inequality together with the fact that
chop(f̃) and g̃ have L2 norm at most 1 and that T̃⊗n is a contraction on L2.

We complete the proof of Theorem 3.1 by proving:

Lemma 3.10 Let q be a fixed integer and let T be a symmetric Markov operator on [q] such that ρ =
r(T ) < 1. Then for any ε > 0, there exists a δ > 0 and an integer k such that if f, g : [q]n → [0, 1] satisfy

∀i min
(
I≤k
i (f), I≤k

i (g)
)

< δ (6)

then
〈f, T⊗ng〉 ≤ 〈Fµ, UρFν〉γ + ε (7)

where µ = E[f ], ν = E[g].

Proof: Let f1 = T⊗n
η f and g1 = T⊗n

η g where η < 1 is chosen so that ρj(1 − η2j) < ε/4 for all j.
Then

|〈f1, T
⊗ng1〉 − 〈f, T⊗ng〉| =

∣∣∣
∑

x

f̂(αx)ĝ(αx)
∏

a 6=0

λ|x|aa (1− η2|x|)
∣∣∣

≤
∑

x

ρ|x|(1− η2|x|)
∣∣∣f̂(αx)ĝ(αx)

∣∣∣ ≤ ε/4

where the last inequality follows from the Cauchy-Schwartz inequality. Thus, in order to prove (7)
it suffices to prove

〈f1, T
⊗ng1〉 ≤ 〈Fµ, UρFν〉γ + 3ε/4. (8)

Let δ(ε/4, η) be the value given by Lemma 3.9 plugging in ε/4 for ε. Let δ′ = δ(ε/4, η)/2. Let k
be chosen so that η2k < min(δ′, ε/4). Define C = k/δ′ and δ = (ε/8C)2 < δ′ . Let

Bf = {i : I≤k
i (f) ≥ δ′}, Bg = {i : I≤k

i (g) ≥ δ′}.
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We note that Bf and Bg are of size at most C = k/δ′. By (6), we have that whenever i ∈ Bf ,
I≤k
i (g) < δ. Similarly, for every i ∈ Bg we have I≤k

i (f) < δ. In particular, Bf and Bg are disjoint.
Recall the averaging operator A. We now let

f2 = ABf
(f1) =

∑

x:xBf
=0

f̂(αx)αxη|x|,

g2 = ABg(g1) =
∑

x:xBg =0

ĝ(αx)αxη|x|.

Clearly, E[f2] = E[f ] and E[g2] = E[g], and for all x, f2(x), g2(x) ∈ [0, 1]. It is easy to see that
Ii(f2) = 0 if i ∈ Bf and Ii(f2) ≤ I≤k

i (f) + η2k < 2δ′ otherwise and similarly for g2. Thus, for any
i, max (Ii(f2), Ii(g2)) < 2δ′. We also see that for any d,

∑
x:|x|≥d |f̂2(αx)|2 ≤ ηd and the same for g2.

Thus, we can apply Lemma 3.9 to obtain that

〈f2, T
⊗ng2〉 ≤ 〈Fµ, UρFν〉γ + ε/4.

In order to show (8) and complete the proof, we show that

|〈f1, T
⊗ng1〉 − 〈f2, T

⊗ng2〉| ≤ ε/2.

This follows by

|〈f1, T
⊗ng1〉 − 〈f2, T

⊗ng2〉| =
∣∣∣

∑

x:xBf∪Bg 6=0

f̂(αx)ĝ(αx)
∏

a 6=0

λ|x|aa η2|x|
∣∣∣

≤ η2k
∑

x:|x|≥k

∣∣∣f̂(αx)ĝ(αx)
∣∣∣ +

∑{∣∣∣f̂(αx)ĝ(αx)
∣∣∣ : xBf∪Bg 6= 0, |x| ≤ k

}

≤ ε/4 +
∑

i∈Bf∪Bg

∑{∣∣∣f̂(αx)ĝ(αx)
∣∣∣ : xi 6= 0, |x| ≤ k

}

≤ ε/4 +
∑

i∈Bf∪Bg

√
I≤k
i (f)

√
I≤k
i (g)

≤ ε/4 +
√

δ(|Bf |+ |Bg|)
≤ ε/4 + 2C

√
δ = ε/2,

where the next-to-last inequality holds because for each i ∈ Bf ∪ Bg one of I≤k
i (f), I≤k

i (g) is at
most δ and the other is at most 1.

The final theorem of this section is needed only for the APPROXCOLORING(3, Q) result. Here,
the operator T acts on [q2] and is assumed to have an additional property. Before proceeding, it is
helpful to recall Definition 2.6.

Theorem 3.11 Let q be a fixed integer and let T be a symmetric Markov operator on [q2] such that ρ =
r(T ) < 1. Suppose moreover, that T has the following property. Given (x1, x2) chosen uniformly at
random and (y1, y2) chosen according to T applied to (x1, x2) we have that (x2, y2) is distributed uniformly
at random. Then for any ε > 0, there exists a δ > 0 and an integer k such that for any functions f, g :
[q]2n → [0, 1] satisfying that for i = 1, . . . , n

min
(
I≤k
2i−1(f), I≤k

2i−1(g)
)

< δ, min
(
I≤k
2i−1(f), I≤k

2i (g)
)

< δ, and min
(
I≤k
2i (f), I≤k

2i−1(g)
)

< δ
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it holds that
〈f, T⊗ng〉 ≥ 〈Fµ, Uρ(1− F1−ν)〉γ − ε (9)

and
〈f, T⊗ng〉 ≤ 〈Fµ, UρFν〉γ + ε (10)

where µ = E[f ], ν = E[g].

Proof: As in Theorem 3.1, (9) follows from (10) so it is enough to prove (10). Assume first that in
addition to the three conditions above we also have that for all i = 1, . . . , n,

min
(
I≤k
2i (f), I≤k

2i (g)
)

< δ. (11)

Then it follows that for all i, either both I≤k
2i−1(f) and I≤k

2i (f) are smaller than δ or both I≤k
2i−1(g) and

I≤k
2i (g) are smaller than δ. Hence, by Claim 2.7, we know that for all i we have

min
(
I
≤k/2
i (f), I≤k/2

i (g)
)

< 2δ

and the result then follows from Lemma 3.10. However, we do not have this extra condition and
hence we have to deal with ‘bad’ coordinates i for which min(I≤k

2i (f), I≤k
2i (g)) ≥ δ. Notice that for

such i it must be the case that both I≤k
2i−1(f) and I≤k

2i−1(g) are smaller than δ. Informally, the proof
proceeds as follows. We first define functions f1, g1 that are obtained from f, g by adding a small
amount of noise. We then obtain f2, g2 from f1, g1 by averaging the coordinates 2i − 1 for bad i.
Finally, we obtain f3, g3 from f2, g2 by averaging the coordinate 2i for bad i. The point here is to
maintain 〈f, T⊗ng〉 ≈ 〈f1, T

⊗ng1〉 ≈ 〈f2, T
⊗ng2〉 ≈ 〈f3, T

⊗ng3〉. The condition in Equation 11 now
applies to f3, g3 and we can apply Lemma 3.10, as described above. We now describe the proof in
more detail.

We first define f1 = T⊗n
η f and g1 = T⊗n

η g where η < 1 is chosen so that ρj(1 − η2j) < ε/4 for
all j. As in the previous lemma it is easy to see that

|〈f1, T
⊗ng1〉 − 〈f, T⊗ng〉| < ε/4

and thus it suffices to prove that

〈f1, T
⊗ng1〉 ≤ 〈Fµ, UρFν〉γ + 3ε/4.

Let δ(ε/2, η), k(ε/2, η) be the values given by Lemma 3.10 with ε taken to be ε/2. Let δ′ =
δ(ε/2, η)/2. Choose a large enough k so that 128kηk < ε2δ′ and k/2 > k(ε/2, η). We let C = k/δ′

and δ = ε2/128C. Notice that δ < δ′ and ηk < δ. Finally, let

B =
{

i
∣∣∣ I≤k

2i (f) ≥ δ′, I≤k
2i (g) ≥ δ′

}
.

We note that B is of size at most C. We also note that if i ∈ B then we have I≤k
2i−1(f) < δ and

I≤k
2i−1(g) < δ. We claim that this implies that I2i−1(f1) ≤ δ + ηk < 2δ and similarly for g. To see

that, take any orthonormal basis β0 = 1, β1, . . . , βq−1 of Rq and notice that we can write

f1 =
∑

x∈[q]2n

f̂(βx)η|x|βx.

Hence,
I2i−1(f1) =

∑

x ∈ [q]2n

x2i−1 6= 0

f̂(βx)2η2|x| < δ + ηk
∑

x ∈ [q]2n

|x| > k

f̂(βx)2 ≤ δ + ηk
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where we used that the number of nonzero elements in x is at least half of that in x.
Next, we define f2 = A2B−1(f1) and g2 = A2B−1(g1) where A is the averaging operator and

2B − 1 denotes the set {2i− 1 | i ∈ B}. Note that

‖f2 − f1‖2
2 = ‖f2 − f1‖2

2 ≤
∑

i∈B

I2i−1(f1) ≤ 2Cδ.

and similarly,
‖g2 − g1‖2

2 = ‖g2 − g1‖2
2 ≤ 2Cδ.

Thus

|〈f1, T
⊗ng1〉 − 〈f2, T

⊗ng2〉| ≤ |〈f1, T
⊗ng1〉 − 〈f1, T

⊗ng2〉|+ |〈f1, T
⊗ng2〉 − 〈f2, T

⊗ng2〉|
≤ 2

√
2Cδ = ε/4

where the last inequality follows from the Cauchy-Schwartz inequality together with the fact that
‖f1‖2 ≤ 1 and also ‖T⊗ng2‖2 ≤ 1. Hence, it suffices to prove

〈f2, T
⊗ng2〉 ≤ 〈Fµ, UρFν〉γ + ε/2.

We now define f3 = A2B(f2) and g3 = A2B(g2). Equivalently, we have f3 = AB(f1) and
g3 = AB(g1). We show that 〈f2, T

⊗ng2〉 = 〈f3, T
⊗ng3〉. Let αx, x ∈ [q2]n, be an orthonormal basis

of eigenvectors of T⊗n. Then

〈f3, T
⊗ng3〉 =

∑

x,y∈[q2]n,xB=yB=0

f̂1(αx)ĝ1(αy)〈αx, T⊗nαy〉. (12)

Moreover, since A is a linear operator and f1 can be written as
∑

x∈[q2]n f̂1(αx)αx and similarly for
g1, we have

〈f2, T
⊗ng2〉 =

∑

x,y∈[q2]n

f̂1(αx)ĝ1(αy)〈A2B−1(αx), T⊗nA2B−1(αy)〉. (13)

First, notice that when xB = 0, A2B−1(αx) = αx since αx does not depend on coordinates in B.
Hence, in order to show that the expressions in (12) and (13) are equal, it suffices to show that

〈A2B−1(αx), T⊗nA2B−1(αy)〉 = 0

unless xB = yB = 0. So assume without loss of generality that i ∈ B is such that xi 6= 0. The above
inner product can be equivalently written as

Ez,z′∈[q2]n [A2B−1(αx)(z) ·A2B−1(αy)(z′)]

where z is chosen uniformly at random and z′ is chosen according to T⊗n applied to z. Fix some
arbitrary values to z1, . . . , zi−1, zi+1, . . . , zn and z′1, . . . , z

′
i−1, z

′
i+1, . . . , z

′
n and let us show that

Ezi,z′i∈[q2][A2B−1(αx)(z) ·A2B−1(αy)(z′)] = 0.

Since i ∈ B, the two expressions inside the expectation do not depend on zi,1 and z′i,1 (where
by zi,1 we mean the first coordinate of zi). Moreover, by our assumption on T , zi,2 and z′i,2 are
independent. Hence, the above expectation is equal to

Ezi∈[q2][A2B−1(αx)(z)] ·Ez′i∈[q2][A2B−1(αy)(z′)].
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Since xi 6= 0, the first expectation is zero. This establishes that 〈f2, T
⊗ng2〉 = 〈f3, T

⊗ng3〉.
The functions f3, g3 satisfy the property that for every i = 1, . . . , n, either both I≤k

2i−1(f3) and
I≤k
2i (f3) are smaller than δ′ or both I≤k

2i−1(g3) and I≤k
2i (g3) are smaller than δ′. By Claim 2.7, we get

that for i = 1, . . . , n, either I
≤k/2
i (f3) or I

≤k/2
i (g3) is smaller 2δ′. We can now apply Lemma 3.10 to

obtain
〈f3, T

⊗ng3〉 ≤ 〈Fµ, UρFν〉γ + ε/2.

4 Approximate Coloring

As mentioned in the introduction, one of the most successful approaches to deriving hardness
proofs, which is also the one we shall take here, is by a reduction from a combinatorial problem
known as the label-cover problem. To recall, in the label-cover problem we are given an undirected
graph together with a constraint (i.e., a binary relation on {1, . . . , R}) for each edge. The goal
is to label the vertices with values from {1, . . . , R} such that the number of satisfied constraints
is maximized, where a constraint is satisfied if the labels on the two incident vertices satisfy the
relation associated with it. It is known that in this problem (as well as in many of its variants),
it is NP-hard to tell whether there exists a way to label the vertices such that all constraints are
satisfied, or whether any labeling satisfies at most, say, 0.01 fraction of the constraints.

Our reduction follows the general paradigm of [6, 25]. Each vertex of the label-cover instance
is replaced with a block of vertices, often known as a gadget. In our case, the gadget is simply a
set of qR vertices, and we think of them as corresponding to elements of [q]R. We then add edges
between these gadgets in a way that “encodes” the label-cover constraints. For the reduction to
work, we need to have two properties. First, if the label-cover is satisfiable, then the resulting
graph is q-colorable (this is known as the completeness part). This property would follow imme-
diately from our construction. The more difficult part is to show that if there is no way to satisfy
more than 0.01 fraction of the constraints in the label-cover instance, then the resulting graph has
chromatic number at least Q (this is known as the soundness part). The way this is shown is by
assuming towards contradiction that there exists a coloring with less than Q colors, and then “de-
coding” it into a labeling of the label-cover instance that satisfies more than 0.01 of the constraints.
It is this part that is usually the most difficult to establish. In our case, we will apply Theorem 1.2
to detect influential coordinates in each block based on the coloring given to it.

The above outline hides one very important fact: for our reduction to work, the label-cover
instances we use must have constraints of a very specific form. For example, we might require all
constraints to be bijections, i.e., a binary relation in which any labelling of one vertex determines
the other, and vice versa. We call this special case 1↔1-label-cover. We will also consider two other
restrictions of the label-cover problem, which we call the 2↔2-label-cover and the B<-label-cover
(read: alpha-label-cover). The precise definitions of these problems will appear later.

As already discussed in the introduction, these special cases of the label-cover problem are
not known to be NP-hard. Nevertheless, Khot’s “unique games conjecture” [30] asserts that such
problems are in fact NP-hard. The conjecture has been heavily scrutinized [36, 13, 22, 14], and so
far there is no evidence against the conjecture.

Our Hardness Results: We now describe our hardness results in more detail. In addition to
APPROXCOLORING(q, Q), we consider the following computational problem, defined for any ε >
0.
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ALMOST3COLORINGε: Given a graph G = (V,E), decide between

• There exists a set V ′ ⊆ V , |V ′| ≥ (1 − ε) |V | such that χ(G|V ′) ≤ 3 where G|V ′ is the graph
induced by V ′.

• Every independent set S ⊆ V in G has size |S| ≤ ε |V |.
Observe that these two items are mutually exclusive for ε < 1/4.

We consider three conjectures: the 1↔1 conjecture, the 2↔2 conjecture, and the B< conjecture.
Roughly speaking, each conjecture says that in the corresponding label-cover instances it is NP-
hard to distinguish between completely satisfiable instances, and instances that are almost com-
pletely unsatisfiable. The only exception is the 1↔1 conjecture: it is easy to see that checking if a
1↔1-label-cover is completely satisfiable can be done in polynomial time. Hence the 1↔1 conjecture
says that it is NP-hard to distinguish between almost completely satisfiable and almost completely
unsatisfiable. This drawback of the 1↔1 conjecture, often known as ‘imperfect completeness’, pre-
vents us from using it for proving the hardness of the approximate coloring problem. Instead, we
use it to show hardness of the (somewhat harder) problem ALMOST3COLORING.

We present three reductions, each from a different special case of the label-cover problem.
These reductions yield the following.

• For any constant ε > 0, the 1↔1 conjecture implies the NP-hardness of ALMOST3COLORINGε.

• For any constant Q > 4, the 2↔2 conjecture implies that APPROXCOLORING(4, Q) is NP-
hard. This also holds for APPROXCOLORING(q,Q) for any q ≥ 4.

• For any constant Q > 3, the B< conjecture implies that APPROXCOLORING(3, Q) is NP-hard.
This also holds for APPROXCOLORING(q, Q) for any q ≥ 3.

We remark that Khot’s original conjectures actually refer to slightly different variants of the
label-cover problem. Most notably, his label-cover instances are bipartite. However, as we shall
show later, Khot’s unique-games conjecture implies our 1↔1 conjecture, and Khot’s two-to-one
conjecture implies our 2↔2 conjecture. The B< conjecture is, to the best of our knowledge, new,
and seems to be not weaker than the 2↔2 conjecture.

Future work: Our constructions can be extended in several ways. First, using similar techniques,
one can show hardness of APPROXCOLORING(q,Q) based on the d-to-1 conjecture of Khot for
larger values of d (and not only d = 2 as we do here). It would be interesting to find out how
q depends on d. Second, by strengthening the current conjectures to sub-constant values, one
can obtain hardness for Q that depends on n, the number of vertices in the graph. Again, it is
interesting to see how large Q can be. Finally, let us mention that in all our reductions we in fact
show in the soundness case that there are no independent sets of relative size larger than ε for
arbitrarily small constant ε (note that this is somewhat stronger than showing that there is no Q-
coloring). In fact, a more careful analysis can be used to obtain the stronger statement that there
are no ‘almost-independent’ sets of relative size larger than ε.

Organization: In Section 4.1, we describe the three conjectures along with some definitions. We
then prove the three reductions mentioned above. The three reductions are very similar, each com-
bining a conjecture with an appropriately constructed noise operator. In Section 4.2 we describe
the three noise operators, and in Section 4.3 we spell out the reductions. Then, in Sections 4.4 and
4.5, we prove the completeness and soundness of the three reductions.
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4.1 Label-cover problems

Definition 4.1 A label-cover instance is a triple G = ((V,E), R,Ψ) where (V, E) is a graph, R is an
integer, and Ψ =

{
ψe ⊆ {1, . . . , R}2

∣∣∣ e ∈ E
}

is a set of constraints (relations), one for each edge. For a
given labeling L : V → {1, . . . , R}, let

satL(G) = Pr
e=(u,v)∈E

[(L(u), L(v)) ∈ ψe], sat(G) = max
L

(satL(G)) .

For t, R ∈ N let
(

R
≤t

)
denote the collection of all subsets of {1, . . . , R} whose size is at most t.

Definition 4.2 A t-labeling is a function L : V → (
R
≤t

)
that labels each vertex v ∈ V with a subset of

values L(v) ⊆ {1, . . . , R} such that |L(v)| ≤ t for all v ∈ V . A t-labeling L is said to satisfy a constraint
ψ ⊆ {1, . . . , R}2 over variables u and v iff there are a ∈ L(u), b ∈ L(v) such that (a, b) ∈ ψ. In other
words, iff (L(u)× L(v)) ∩ ψ 6= ∅.

In the special case of t = 1, a 1-labeling is essentially a labeling L : V → {1, . . . , R} (except that
some vertices might get no label).

Similar to the definition of sat(G), we also define isat(G) (“induced-sat”) to be the relative size
of the largest set of vertices for which there is a labeling that satisfies all of the induced edges.

isat(G) = max
S

{ |S|
|V |

∣∣∣∣ ∃L : S → {1, . . . , R} that satisfies all the constraints induced by S ⊆ V

}
.

Let isatt(G) denote the relative size of the largest set of vertices S ⊆ V for which there is a t-labeling
that satisfies all the constraints induced by S.

isatt(G) = max
S

{ |S|
|V |

∣∣∣∣ ∃L : S →
(

R

≤ t

)
that satisfies all the constraints induced by S ⊆ V

}
.

We next describe three conjectures on which our reductions are based. The main difference
between the three conjectures is in the type of constraints that are allowed. The three types are
defined next, and also illustrated in Figure 1.

Definition 4.3 (1↔1-constraint) A 1↔1 constraint is a relation {(i, π(i))}R
i=1, where π : {1, . . . , R} →

{1, . . . , R} is any arbitrary permutation. The constraint is satisfied by (a, b) iff b = π(a).

Definition 4.4 (2↔2-constraint) A 2↔2 constraint is defined by a pair of permutations π1, π2 : {1, . . . , 2R} →
{1, . . . , 2R} and the relation

2↔2 = {(2i, 2i), (2i, 2i− 1), (2i− 1, 2i), (2i− 1, 2i− 1)}R
i=1 .

The constraint is satisfied by (a, b) iff (π−1
1 (a), π−1

2 (b)) ∈ 2↔2.

Definition 4.5 (B<-constraint) An B< constraint is defined by a pair of permutations π1, π2 : {1, . . . , 2R} →
{1, . . . , 2R} and the relation

B< = {(2i− 1, 2i− 1), (2i, 2i− 1), (2i− 1, 2i)}R
i=1 .

The constraint is satisfied by (a, b) iff (π−1
1 (a), π−1

2 (b)) ∈ B<.
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Figure 1: Three types of constraints (top to bottom): 1↔1, B<, 2↔2

Conjecture 4.6 (1↔1 Conjecture) For any ε, ζ > 0 and t ∈ N there exists some R ∈ N such that given a
label-cover instance G = 〈(V, E), R,Ψ〉 where all constraints are 1↔1-constraints, it is NP-hard to decide
between

• isat(G) ≥ 1− ζ

• isatt(G) < ε

It is easy to see that the above problem is in P when ζ = 0.

Conjecture 4.7 (2↔2 Conjecture) For any ε > 0 and t ∈ N there exists some R ∈ N such that given
a label-cover instance G = 〈(V,E), 2R, Ψ〉 where all constraints are 2↔2-constraints, it is NP-hard to
decide between

• sat(G) = 1

• isatt(G) < ε

The above two conjectures are no stronger than the corresponding conjectures of Khot. Namely,
our 1↔1 conjecture is not stronger than Khot’s (bipartite) unique games conjecture, and our 2↔2
conjecture is not stronger than Khot’s (bipartite) two-to-one conjecture. The former claim was
already proven by Khot and Regev in [32]. The latter claim is proven in a similar way. For com-
pleteness, we include both proofs in Appendix A. We also make a third conjecture that is used
in our reduction to APPROXCOLORING(3, Q). This conjecture seems stronger than Khot’s conjec-
tures.

Conjecture 4.8 (B< Conjecture) For any ε > 0 and t ∈ N there exists some R ∈ N such that given a
label-cover instance G = 〈(V, E), 2R, Ψ〉 where all constraints are B<-constraints, it is NP-hard to decide
between

• sat(G) = 1

• isatt(G) < ε

Remark: The (strange-looking) B<-shaped constraints have already appeared before in [16]. There,
it is essentially proven that for all ε, ζ > 0 given a label-cover instance G where all constraints are
B<-constraints, it is NP-hard to distinguish between

• isat(G) > 1− ζ
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• isatt=1(G) < ε

The main difference between their theorem and our conjecture is that in our conjecture we consider
any constant t, while in their case t is 1. Another difference is that in our conjecture we assume
perfect completeness (i.e., sat(G) = 1).1

4.2 Noise operators

We now define the noise operators corresponding to the 1↔1-constraints, B<-constraints, and
2↔2-constraints. The noise operator that corresponds to the 1↔1-constraints is the simplest, and
acts on {0, 1, 2}. For the other two cases, since the constraints involve pairs of coordinates, we
obtain an operator on {0, 1, 2}2 and an operator on {0, 1, 2, 3}2. See Figure 2 for an illustration.

(a) (b) (c)

Figure 2: Three noise operators (edge weights not shown) corresponding to: (a) 1↔1, (b) B<, and
(c) 2↔2.

Lemma 4.9 There exists a symmetric Markov operator T on {0, 1, 2} such that r(T ) < 1 and such that if
T (x ↔ y) > 0 then x 6= y.

Proof: Take the operator given by

T =




0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


 .

See Figure 2(a).

Lemma 4.10 There exists a symmetric Markov operator T on {0, 1, 2, 3}2 such that r(T ) < 1 and such
that if T ((x1, x2) ↔ (y1, y2)) > 0 then {x1, x2} ∩ {y1, y2} = ∅.

Proof: Our operator has three types of transitions, with transitions probabilities β1, β2, and β3.

1 The main idea in their construction is to take an NP-hard label-cover as given by the parallel repetition theorem
applied to the PCP theorem, and to construct a new B<-label-cover with

(
R|X|

l

)
variables corresponding to all subsets

of size l of X × {1, . . . , R}, where l = cR for some large constant c. The number of labels is equal to the number of
binary strings of length l whose Hamming weight is at least l/2R. Constraints are placed between any pair of l-tuples
for which (i) their intersection has size l − 1, and (ii) the unique elements, one from each l-tuple, correspond to an
inconsistency in the original label-cover. These constraints check for agreement on their intersection and that not both
unique elements are 1, and are therefore essentially B<-constraints.
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• With probability β1 we have (x, x) ↔ (y, y) where x 6= y.

• With probability β2 we have (x, x) ↔ (y, z) where x, y, z are all different.

• With probability β3 we have (x, y) ↔ (z, w) where x, y, z, w are all different.

These transitions are illustrated in Figure 2(c). For T to be a symmetric Markov operator, we need
that β1, β2 and β3 are non-negative and

3β1 + 6β2 = 1, 2β2 + 2β3 = 1.

It is easy to see that the two equations above have solutions bounded away from 0 and that the
corresponding operator has r(T ) < 1. For example, choose β1 = 1

12 , β2 = 1
8 , and β3 = 3

8 .

Lemma 4.11 There exists a symmetric Markov operator T on {0, 1, 2}2 such that r(T ) < 1 and such that
if T ((x1, x2) ↔ (y1, y2)) > 0 then x1 /∈ {y1, y2} and y1 /∈ {x1, x2}. Moreover, the noise operator T
satisfies the following property. Let (x1, x2) be chosen according to the uniform distribution and (y1, y2) be
chosen according T applied to (x1, x2). Then the distribution of (x2, y2) is uniform.

Proof: The proof resembles the previous proof. Again there are 3 types of transitions.

• With probability β1 we have (x, x) ↔ (y, y) where x 6= y.

• With probability β2 we have (x, x) ↔ (y, z) where x, y, z are all different.

• With probability β3 we have (x, y) ↔ (z, y) where x, y, z are all different.

For T to be a symmetric Markov operator we require β1, β2 and β3 to be non-negative and

2β1 + 2β2 = 1, β2 + β3 = 1.

For the uniformity property, assume (x1, x2) is chosen according to the uniform distribution and
(y1, y2) is chosen according T applied to (x1, x2). It is not difficult to verify that each of the nine
possible settings of (x2, y2) is obtained with probability either 2β3/9 (if x2 = y2) or β1/9 + 2β2/9
(otherwise). Therefore, the uniformity property amounts to the equation

β1 + 2β2 = 2β3.

It is easy to see that β2 = β3 = 1
2 and β1 = 0 is the solution of all equations and that the corre-

sponding operator has r(T ) < 1. This operator is illustrated in Figure 2(b).

4.3 The three reductions

The basic idea in all three reductions is to take a label-cover instance and to replace each vertex
with a block of qR vertices, corresponding to the q-ary hypercube [q]R. The intended way to q-
color this block is by coloring x ∈ [q]R according to xi where i is the label given to this block. One
can think of this coloring as an encoding of the label i. We will essentially prove that any other
coloring of this block that uses relatively few colors, can be “list-decoded” into at most t labels
from {1, . . . , R}. By properly defining edges connecting these blocks, we can guarantee that the
lists decoded from two blocks can be used as t-labelings for the label-cover instance.

In the rest of this section, we use the following notation. For a vector x = (x1, . . . , xn) and a
permutation π on {1, . . . , n}, we define xπ = (xπ(1), . . . , xπ(n)).
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ALMOST3COLORING: Let G = ((V, E), R,Ψ) be a label-cover instance as in Conjecture 4.6. For
v ∈ V write [v] for a collection of vertices, one per point in {0, 1, 2}R. Let e = (v, w) ∈ E, and let
ψ be the 1↔1-constraint associated with e. By Definition 4.3 there is a permutation π such that
(a, b) ∈ ψ iff b = π(a). We now write [v, w] for the following collection of edges. We put an edge
(x, y) for x = (x1, . . . , xR) ∈ [v] and y = (y1, . . . , yR) ∈ [w] iff

∀i ∈ {1, . . . , R} , T
(
xi ↔ yπ(i)

) 6= 0

where T is the noise operator from Lemma 4.9. In other words, x is adjacent to y whenever

T⊗R (x ↔ yπ) =
R∏

i=1

T
(
xi ↔ yπ(i)

) 6= 0.

The reduction outputs the graph [G] = ([V ], [E]) where [V ] is the disjoint union of all blocks [v]
and [E] is the disjoint union of all collections of edges [v, w].

APPROXCOLORING(4, Q): This reduction is nearly identical to the one above, with the following
changes:

• The starting point of the reduction is an instance G = ((V, E), 2R, Ψ) as in Conjecture 4.7.

• Each vertex v is replaced by a copy of {0, 1, 2, 3}2R (which we still denote [v]).

• For every (v, w) ∈ E, let ψ be the 2↔2-constraint associated with e. By Definition 4.4 there
are two permutations π1, π2 such that (a, b) ∈ ψ iff (π−1

1 (a), π−1
2 (b)) ∈ 2↔2. We now write

[v, w] for the following collection of edges. We put an edge (x, y) for x = (x1, . . . , x2R) ∈ [v]
and y = (y1, . . . , y2R) ∈ [w] if

∀i ∈ {1, . . . , R} , T ((xπ1(2i−1), xπ1(2i)) ↔ (yπ2(2i−1), yπ2(2i))) 6= 0

where T is the noise operator from Lemma 4.10. Equivalently, we put an edge if T⊗R(xπ1 ↔
yπ2) 6= 0.

As before, the reduction outputs the graph [G] = ([V ], [E]) where [V ] is the union of all blocks [v]
and [E] is the union of collection of the edges [v, w].

APPROXCOLORING(3, Q): Here again the reduction is nearly identical to the above, with the
following changes:

• The starting point of the reduction is an instance of label-cover, as in Conjecture 4.8.

• Each vertex v is replaced by a copy of {0, 1, 2}2R (which we again denote [v]).

• For every (v, w) ∈ E, let π1, π2 be the permutations associated with the constraint, as in
Definition 4.5. Define a collection [v, w] of edges, by including the edge (x, y) ∈ [v]× [w] iff

∀i ∈ {1, . . . , R} , T ((xπ1(2i−1), xπ1(2i)) ↔ (yπ2(2i−1), yπ2(2i))) 6= 0

where T is the noise operator from Lemma 4.11. As before, this condition can be written as
T⊗R(xπ1 ↔ yπ2) 6= 0.

As before, we look at the coloring problem of the graph [G] = ([V ], [E]) where [V ] is the union of
all blocks [v] and [E] is the union of collection of the edges [v, w].
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4.4 Completeness of the three reductions

ALMOST3COLORING: If isat(G) ≥ 1 − ε, then there is some S ⊆ V of size (1 − ε) |V | and a
labeling ` : S → R that satisfies all of the constraints induced by S. We 3-color all of the vertices
in ∪v∈S [v] as follows. Let c : ∪v∈S [v] → {0, 1, 2} be defined as follows. For every v ∈ S, the color
of x = (x1, . . . , xR) ∈ {0, 1, 2}R = [v] is defined to be c(x):=xi, where i = `(v) ∈ {1, . . . , R}.

To see that c is a legal coloring on ∪v∈S [v], observe that if x ∈ [v] and y ∈ [w] share the same
color, then xi = yj for i = `(v) and j = `(w). Since ` satisfies every constraint induced by S,
it follows that if (v, w) is a constraint with an associated permutation π, then j = π(i). Since
T (z ↔ z) = 0 for all z ∈ {0, 1, 2}, there is no edge between x and y.

APPROXCOLORING(4, Q): Let ` : V → {1, . . . , 2R} be a labeling that satisfies all the constraints
in G. We define a legal 4-coloring c : [V ] → {0, 1, 2, 3} as follows. For a vertex x = (x1, . . . , x2R) ∈
{0, 1, 2, 3}2R = [v] set c(x):=xi, where i = `(v) ∈ {1, . . . , 2R}.

To see that c is a legal coloring, fix any 2↔2 constraint (v, w) ∈ E and let π1, π2 be the
permutations associated with it. Let i = `(v) and j = `(w), so by the assumption on ` we
have that (π−1

1 (i), π−1
2 (j)) ∈ 2↔2. In other words there is some k ∈ {1, . . . , R} such that i ∈

{π1(2k − 1), π1(2k)} and j ∈ {π2(2k − 1), π2(2k)}. If x ∈ [v] and y ∈ [w] share the same color, then
xi = c(x) = c(y) = yj . Since

xi ∈
{
xπ1

2k−1, x
π1
2k

}
and yj ∈

{
yπ2
2k−1, y

π2
2k

}

we have that the above sets intersect. This, by Lemma 4.10, implies that T⊗R(xπ1 ↔ yπ2) = 0. So
the vertices x, y cannot be adjacent, hence the coloring is legal.

APPROXCOLORING(3, Q): Here the argument is nearly identical to the above. Let ` : V →
{1, . . . , 2R} be a labeling that satisfies all of the constraints in G. We define a legal 3-coloring c :
[V ] → {0, 1, 2} like before: c(x):=xi, where i = `(v) ∈ {1, . . . , 2R}. To see that c is a legal coloring,
fix any edge (v, w) ∈ E and let π1, π2 be the permutations associated with the B<-constraint. Let
i = `(v) and j = `(w), so by the assumption on ` we have that (π−1

1 (i), π−1
2 (j)) ∈ B<. In other

words there is some k ∈ {1, . . . , R} such that i ∈ {π1(2k − 1), π1(2k)} and j ∈ {π2(2k − 1), π2(2k)}
and not both i = π1(2k) and j = π2(2k). Assume, without loss of generality, that i = π1(2k − 1),
so xi = xπ1

2k−1 and yj ∈
{
yπ2
2k−1, y

π2
2k

}
.

If x ∈ [v] and y ∈ [w] share the same color, then xi = c(x) = c(y) = yj , so

xπ1
2k−1 = xi = yj ∈

{
yπ2
2k−1, y

π2
2k

}
.

By Lemma 4.11 this implies T ((xπ1
2k−1, x

π1
2k) ↔ (yπ2

2k−1, y
π2
2k)) = 0, which means there is no edge

between x and y.

4.5 Soundness of the three reductions

Before presenting the soundness proofs, we need the following corollary. It is simply a special
case of Theorem 3.1 stated in the contrapositive, with ε playing the role of ν and µ. Here we use
the fact that 〈Fε, Uρ(1− F1−ε)〉γ > 0 whenever ε > 0.

Corollary 4.12 Let q be a fixed integer and let T be a symmetric Markov operator on [q] such that r(T ) < 1.
Then for any ε > 0 there exist δ > 0 and k ∈ N such that the following holds. For any f, g : [q]n → [0, 1],
if E[f ] ≥ ε, E[g] ≥ ε, and 〈f, T⊗ng〉 = 0, then

∃i ∈ {1, . . . , n}, I≤k
i (f) ≥ δ and I≤k

i (g) ≥ δ .
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ALMOST3COLORING: We will show that if [G] has an independent set S ⊆ [V ] of relative size
≥ 2ε, then isatt(G) ≥ ε for a fixed constant t > 0 that depends only on ε. More explicitly, we
will find a set J ⊆ V , and a t-labeling L : J → (

R
≤t

)
such that |J | ≥ ε |V | and L satisfies all the

constraints of G induced by J . In other words, for every constraint ψ over an edge (u, v) ∈ E ∩J2,
there are values a ∈ L(u) and b ∈ L(v) such that (a, b) ∈ ψ.

Let J be the set of all vertices v ∈ V such that the fraction of vertices belonging to S in [v] is at
least ε. Then, since |S| ≥ 2ε |[V ]|, Markov’s inequality implies |J | ≥ ε |V |.

For each v ∈ J let fv : {0, 1, 2}R → {0, 1} be the characteristic function of S restricted to [v], so
E[fv] ≥ ε. Select δ, k according to Corollary 4.12 with ε and the operator T of Lemma 4.9, and set

L(v) =
{

i ∈ {1, . . . , R}
∣∣∣ I≤k

i (fv) ≥ δ
}

.

Clearly, |L(v)| ≤ k/δ because
∑R

i=1 I≤k
i (f) ≤ k. Thus, L is a t-labeling for t = k/δ. The main point

to prove is that for every edge e = (v1, v2) ∈ E ∩ J2 induced on J , there is some a ∈ L(v1) and
b ∈ L(v2) such that (a, b) ∈ ψe. This would imply that isatt(G) ≥ |J | / |V | ≥ ε.

Fix (v1, v2) ∈ E ∩ J2, and let π be the permutation associated with the 1↔1 constraint on this
edge. (It may be easier to first think of π = id.) Recall that the edges in [v1, v2] were defined
based on π, and on the noise operator T defined in Lemma 4.9. Let f = fv1 , and define g by
g(xπ) = fv2(x). Since S is an independent set, f(x) = fv1(x) = 1 and g(yπ) = fv2(y) = 1 implies
that x, y are not adjacent, so by construction T⊗R(x ↔ yπ) = 0. Therefore,

〈f, T⊗Rg〉 = 3−R
∑

x

f(x)T⊗Rg(x) = 3−R
∑

x

f(x)
∑
yπ

T⊗R(x ↔ yπ)g(yπ) =
∑
x,yπ

0 = 0 .

Also, by assumption, E[g] ≥ ε and E[f ] ≥ ε. Corollary 4.12 implies that there is some index
i ∈ {1, . . . , R} for which both I≤k

i (f) ≥ δ and I≤k
i (g) ≥ δ. By definition of L, i ∈ L(v1). Since

the i-th variable in g is the π(i)-th variable in fv2 , π(i) ∈ L(v2). It follows that there are values
i ∈ L(v1) and π(i) ∈ L(v2) such that (i, π(i)) satisfies the constraint on (v1, v2). This means that
isatt(G) ≥ |J | / |V | ≥ ε.

APPROXCOLORING(4, Q): We outline the argument and emphasize only the modifications. As-
sume that [G] contains an independent set S ⊆ [V ] whose relative size is at least 1/Q and set
ε = 1/2Q.

• Let fv : {0, 1, 2, 3}2R → {0, 1} be the characteristic function of S in [v]. Define the set J ⊆ V
as before and for all v ∈ J , define

L(v) =
{

i ∈ {1, . . . , 2R}
∣∣∣∣ I≤2k

i (fv) ≥ δ

2

}

where k, δ are the values given by Corollary 4.12 with ε and the operator T of Lemma 4.10.
As before, |J | ≥ ε |V | and E[fv] ≥ ε for v ∈ J . Now L is a t-labeling with t = 4k/δ.
Fix an edge (v, w) ∈ E ∩ J2 and let π1, π2 be the associated permutations. Define f, g by
f(xπ1):=fv1(x) and g(yπ2):=fv2(y).

• Since S is an independent set, f(xπ1) = fv1(x) = 1 and g(yπ2) = fv2(y) = 1 implies that x, y
are not adjacent, so by construction T⊗R(xπ1 ↔ yπ2) = 0. Therefore, 〈f, T⊗Rg〉 = 0.
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• Now, recalling Definition 2.6, consider the functions f, g : ({0, 1, 2, 3}2)R → {0, 1}. Applying
Corollary 4.12 on f, g we may deduce the existence of an index i ∈ {1, . . . , R} for which
both I≤k

i (f) ≥ δ and I≤k
i (g) ≥ δ. By Claim 2.7, δ ≤ I≤k

i (f) ≤ I≤2k
2i−1(f) + I≤2k

2i (f), so either
I≤2k
2i−1(f) ≥ δ/2 or I≤2k

2i (f) ≥ δ/2. Since the j-th variable in f is the π1(j)-th variable in fv1 ,
this puts either π1(2i) or π1(2i − 1) in L(v1). Similarly, at least one of π2(2i), π2(2i − 1) is in
L(v2). Thus, there are a ∈ L(v1) and b ∈ L(v2) such that (π−1

1 (a), π−1
2 (b)) ∈ 2↔2 so L satisfies

the constraint on (v1, v2).

We have shown that L satisfies every constraint induced by J , so isatt(G) ≥ ε.

APPROXCOLORING(3, Q): The argument here is similar to the previous one. The main differ-
ence is in the third step, where we replace Corollary 4.12 by the following corollary of Theo-
rem 3.11. The corollary follows by letting ε play the role of µ and ν, and using the fact that
〈Fε, Uρ(1− F1−ε)〉γ > 0 whenever ε > 0.

Corollary 4.13 Let T be the operator on {0, 1, 2}2 defined in Lemma 4.11. For any ε > 0, there exists
δ > 0, k ∈ N, such that for any functions f, g : {0, 1, 2}2R → [0, 1] satisfying E[f ] ≥ ε,E[g] ≥ ε, there
exists some i ∈ {1, . . . , R} such that either

min
(
I≤k
2i−1(f), I≤k

2i−1(g)
) ≥ δ or min

(
I≤k
2i−1(f), I≤k

2i (g)
) ≥ δ or min

(
I≤k
2i (f), I≤k

2i−1(g)
) ≥ δ.

Now we have functions fv : {0, 1, 2}2R → {0, 1}, and J is defined as before. Define a labeling

L(v) =
{

i ∈ {1, . . . , 2R}
∣∣∣ I≤k

i (fv) ≥ δ
}

where k, δ are the values given by Corollary 4.13 with ε. Then L is a t-labeling with t = k/δ.
Let us now show that L is a satisfying t-labeling. Let (v1, v2) be a B<-constraint with associated

permutations π1, π2. Define f(xπ1) = fv1(x), g(xπ2) = fv2(x). We apply Corollary 4.13 on f, g, and
obtain an index i ∈ {1, . . . , R}. Since the j-th variable in f is the π1(j)-th variable in fv1 , this puts
either π1(2i) or π1(2i−1) in L(v1). Similarly, at least one of π2(2i), π2(2i−1) is in L(v2). Moreover,
we are guaranteed that either π1(2i − 1) ∈ L(v1) or π2(2i − 1) ∈ L(v2). Thus, there are a ∈ L(v1)
and b ∈ L(v2) such that (π−1

1 (a), π−1
2 (b)) ∈ B< so L satisfies the constraint on (v1, v2).
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A Comparison with Khot’s Conjectures

Let us first state Khot’s original conjectures. For d ≥ 1, an instance of the weighted bipartite d-to-1
label cover problem is given by a tuple Φ = (X, Y,Ψ, W ). We often refer to variables in X as left
variables and to variables in Y as right variables. The set Ψ consists of one d-to-1 relation ψxy

26



for each x ∈ X and y ∈ Y . More precisely, ψxy ⊆ {1, . . . , R} × {1, . . . , R/d} is such that for any
b ∈ {1, . . . , R/d} there are precisely d elements a ∈ {1, . . . , R} such that (a, b) ∈ ψxy. The set W
includes a non-negative weight wxy ≥ 0 for each x ∈ X , y ∈ Y . We denote by w(Φ, x) the sum∑

y∈Y wxy and by w(Φ) the sum
∑

x∈X,y∈Y wxy. A labeling is a function L mapping X to {1, . . . , R}
and Y to {1, . . . , R/d}. A constraint ψxy is satisfied by a labeling L if (L(x), L(y)) ∈ ψxy. Also,
for a labeling L, the weight of satisfied constraints, denoted by wL(Φ), is

∑
wxy where the sum is

taken over all x ∈ X and y ∈ Y such that ψxy is satisfied by L. Similarly, we define wL(Φ, x) as∑
wxy where the sum is now taken over all y ∈ Y such that ψxy is satisfied by L. The following

conjectures were presented in [30].

Conjecture A.1 (Bipartite 1-to-1 Conjecture) For any ζ, γ > 0 there exists a constant R such that the
following is NP-hard. Given a 1-to-1 label cover instance Φ with label set {1, . . . , R} and w(Φ) = 1
distinguish between the case where there exists a labeling L such that wL(Φ) ≥ 1 − ζ and the case where
for any labeling L, wL(Φ) ≤ γ.

In the following conjecture, d is any fixed integer greater than 1.

Conjecture A.2 (Bipartite d-to-1 Conjecture) For any γ > 0 there exists a constant R such that the fol-
lowing is NP-hard. Given a bipartite d-to-1 label cover instance Φ with label sets {1, . . . , R}, {1, . . . , R/d}
and w(Φ) = 1 distinguish between the case where there exists a labeling L such that wL(Φ) = 1 and the
case where for any labeling L, wL(Φ) ≤ γ.

The theorem we prove in this section is the following.

Theorem A.3 Conjecture 4.6 follows from Conjecture A.1 and Conjecture 4.7 follows from Conjecture A.2
for d = 2.2

The first part of the theorem was already proven in [32], and the second part is proven similarly.
For completeness, we include here the entire proof of the theorem.

The proof follows by combining Lemmas A.4, A.5, A.7, and A.9. Each lemma presents an
elementary transformation between variants of the label cover problem. The first transformation
modifies a bipartite label cover instance so that all X variables have the same weight. When we
say below that Φ′ has the same type of constraints as Φ we mean that the transformation only
duplicates existing constraints and hence if Φ consists of d-to-1 constraints for some d ≥ 1, then so
does Φ′.

Lemma A.4 There exists an efficient procedure that given a weighted bipartite label cover instance Φ =
(X,Y,Ψ,W ) with w(Φ) = 1 and a constant `, outputs a weighted bipartite label cover instance Φ′ =
(X ′, Y,Ψ′,W ′) on the same label sets and with the same type of constraints with the following properties:

• For all x ∈ X ′, w(Φ′, x) = 1.

• For any ζ ≥ 0, if there exists a labeling L to Φ such that wL(Φ) ≥ 1−ζ then there exists a labeling L′

to Φ′ in which 1−
√

(1 + 1
`−1)ζ of the variables x in X ′ satisfy that wL′(Φ′, x) ≥ 1−

√
(1 + 1

`−1)ζ.
In particular, if there exists a labeling L such that wL(Φ) = 1 then there exists a labeling L′ in which
all variables satisfy wL′(Φ′, x) = 1.

2We in fact show that for any d ≥ 2, the natural extension of Conjecture 4.7 to d-to-d constraints follows from
Conjecture A.2 with the same value of d.
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• For any β, γ > 0, if there exists a labeling L′ to Φ′ in which β of the variables x in X ′ satisfy
wL′(Φ′, x) ≥ γ, then there exists a labeling L to Φ such that wL(Φ) ≥ (1− 1

` )βγ.

Proof: Given Φ as above, we define Φ′ = (X ′, Y, Ψ′,W ′) as follows. The set X ′ includes k(x)
copies of each x ∈ X , x(1), . . . , x(k(x)) where k(x) is defined as b` · |X| · w(Φ, x)c. For every x ∈ X ,
y ∈ Y and i ∈ {1, . . . , k(x)} we define ψ′

x(i)y
as ψxy and the weight w′

x(i)y
as wxy/w(Φ, x). Notice

that w(Φ′, x) = 1 for all x ∈ X ′ and that (`− 1)|X| ≤ |X ′| ≤ `|X|. Moreover, for any x ∈ X , y ∈ Y ,
the total weight of constraints created from ψxy is k(x)wxy/w(Φ, x) ≤ `|X|wxy.

We now prove the second property. Given a labeling L to Φ that satisfies constraints of weight
at least 1−ζ, consider the labeling L′ defined by L′(x(i)) = L(x) and L′(y) = L(y). By the property
mentioned above, the total weight of unsatisfied constraints in Φ′ is at most `|X|ζ. Since the total
weight in Φ′ is at least (` − 1)|X|, we obtain that the fraction of unsatisfied constraints is at most

(1 + 1
`−1)ζ. Hence, by a Markov argument, we obtain that for at least 1 −

√
(1 + 1

`−1)ζ of the X ′

variables wL′(Φ′, x) ≥ 1−
√

(1 + 1
`−1)ζ.

We now prove the third property. Assume we are given a labeling L′ to Φ′ for which β of the
variables have wL′(Φ′, x) ≥ γ. Without loss of generality we can assume that for every x ∈ X ,
the labeling L′(x(i)) is the same for all i. This holds since the constraints between x(i) and the Y
variables are the same for all i ∈ {1, . . . , k(x)}. We define the labeling L as L(x) = L′(x(1)). The
weight of constraints satisfied by L is:

∑

x∈X

wL(Φ, x) ≥ 1
`|X|

∑

x∈X

k(x) · wL(Φ, x)/w(Φ, x)

=
1

`|X|
∑

x∈X′
wL′(Φ′, x)

≥ 1
`|X|β|X

′|γ ≥
(
1− 1

`

)
βγ

where the first inequality follows from the definition of k(x).

The second transformation creates an unweighted label cover instance. Such an instance is
given by a tuple Φ = (X, Y,Ψ, E). The multiset E includes pairs (x, y) ∈ X × Y and we can
think of (X, Y, E) as a bipartite graph (possibly with parallel edges). For each e ∈ E, Ψ includes
a constraint, as before. The instances created by this transformation are left-regular, in the sense
that the number of constraints (x, y) ∈ E incident to each x ∈ X is the same.

Lemma A.5 There exists an efficient procedure that given a weighted bipartite label cover instance Φ =
(X,Y,Ψ,W ) with w(Φ, x) = 1 for all x ∈ X and a constant `, outputs an unweighted bipartite label cover
instance Φ′ = (X, Y,Ψ′, E′) on the same label sets and with the same type of constraints with the following
properties:

• All left degrees are equal to α = `|Y |.
• For any β, ζ > 0, if there exists a labeling L to Φ such that wL(Φ, x) ≥ 1 − ζ for at least 1 − β of

the variables in X , then there exists a labeling L′ to Φ′ in which for at least 1− β of the variables in
X , at least 1 − ζ − 1/` of their incident constraints are satisfied. Moreover, if there exists a labeling
L such that wL(Φ, x) = 1 for all x then there exists a labeling L′ to Φ′ that satisfies all constraints.
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• For any β, γ > 0, if there exists a labeling L′ to Φ′ in which β of the variables in X have γ of their
incident constraints satisfied, then there exists a labeling L to Φ such that for β of the variables in X ,
wL(Φ, x) > γ − 1/`.

Proof: We define the instance Φ′ = (X, Y,Ψ′, E′) as follows. For each x ∈ X , choose some y0(x) ∈
Y such that wxy0(x) > 0. For every x ∈ X , y 6= y0(x), E′ contains bαwxyc edges from x to y
associated with the constraint ψxy. Moreover, for every x ∈ X , E′ contains α−∑

y∈Y \{y0(x)}bαwxyc
edges from x to y0(x) associated with the constraint ψxy0(x). Notice that all left degrees are equal
to α. Moreover, for any x, y 6= y0(x), we have that the number of edges between x and y is at most
αwxy and the number of edges from x to y0(x) is at most αwxy0(x) + |Y | = α(wxy0(x) + 1/`).

Consider a labeling L to Φ and let x ∈ X be such that wL(Φ, x) > 1 − ζ. Then, in Φ′, the
same labeling satisfies that the number of incident constraints to x that are satisfied is at least
(1 − ζ − 1/`)α. Moreover, if wL(Φ, x) = 1 then all its incident constraints in Φ′ are satisfied (this
uses that wxy0(x) > 0). Finally, consider a labeling L′ to Φ′ and let x ∈ X have γ of its incident
constraints satisfied. Then, wL′(Φ, x) > γ − 1

` .

In the third lemma we modify a left-regular unweighted label cover instance so that it has
the following property: if there exists a labeling to the original instance that for many variables
satisfies many of their incident constraints, then the resulting instance has a labeling that for many
variables satisfies all their incident constraints. But first, we prove a combinatorial claim.

Claim A.6 For any integers `, d,R and real 0 < γ < 1
`2d

, let F ⊆ P ({1, . . . , R}) be a multiset containing
subsets of {1, . . . , R} each of size at most d with the property that no element i ∈ {1, . . . , R} is contained
in more than γ fraction of the sets in F . Then, the probability that a sequence of sets F1, F2, . . . , F` chosen
uniformly from F (with repetitions) is pairwise disjoint is at least 1− `2dγ.

Proof: Note that by the union bound it suffices to prove that Pr[F1 ∩ F2 6= ∅] ≤ dγ. This follows
by fixing F1 and using the union bound again:

Pr[F1 ∩ F2 6= ∅] ≤
∑

x∈F1

Pr[x ∈ F2] ≤ dγ.

Lemma A.7 There exists an efficient procedure that given an unweighted bipartite d-to-1 label cover in-
stance Φ = (X,Y,Ψ, E) with all left-degrees equal to some α, and a constant `, outputs an unweighted
bipartite d-to-1 label cover instance Φ′ = (X ′, Y, Ψ′, E′) on the same label sets with the following properties:

• All left degrees are equal to `.

• For any β, ζ ≥ 0, if there exists a labeling L to Φ such that for at least 1−β of the variables in X 1−ζ
of their incident constraints are satisfied, then there exists a labeling L′ to Φ′ in which (1−ζ)`(1−β)
of the X ′ variables have all their ` constraints satisfied. In particular, if there exists a labeling L to Φ
that satisfies all constraints then there exists a labeling L′ to Φ′ that satisfies all constraints.

• For any β > 0, 0 < γ < 1
`2d

, if in any labeling L to Φ at most β of the variables have γ of their
incident constraints satisfied, then in any labeling L′ to Φ′, the fraction of satisfied constraints is at
most β + 1

` + (1− β)`2dγ.
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Proof: We define Φ′ = (X ′, Y, Ψ′, E′) as follows. For each x ∈ X , consider its neighbors (y1, . . . , yα)
listed with multiplicities. For each sequence (yi1 , . . . , yi`) where i1, . . . , i` ∈ {1, . . . , α} we create
a variable in X ′. This variable is connected to yi1 , . . . , yi` with the same constraints as x, namely
ψxyi1

, . . . , ψxyi`
. Notice that the total number of variables created from each x ∈ X is α`. Hence,

|X ′| = α`|X|.
We now prove the second property. Assume that L is a labeling to Φ such that for at least 1−β

of the variables in X , 1 − ζ of their incident constraints are satisfied. Let L′ be the labeling to Φ′

assigning to each of the variables created from x ∈ X the value L(x) and for each y ∈ Y the value
L(y). Consider a variable x ∈ X that has 1−ζ of its incident constraints satisfied and let Yx denote
the set of variables y ∈ Y such that ψxy is satisfied. Then among the variables in X ′ created from x,
the number of variables that are connected only to variables in Yx is at least α`(1− ζ)`. Therefore,
the total number of variables all of whose constraints are satisfied by L′ is at least

α`(1− ζ)`(1− β)|X| = (1− ζ)`(1− β)|X ′|.
We now prove the third property. Assume that in any labeling L to Φ at most β of the X

variables have γ of their incident constraints satisfied. Let L′ be an arbitrary labeling to Φ′. For
each x ∈ X define Fx ⊆ P ({1, . . . , R}) as the multiset that contains for each constraint incident to
x the set of labels to x that, together with the labeling to the Y variables given by L′, satisfy this
constraint. So Fx contains α sets, each of size d. Moreover, our assumption above implies that for
at least 1−β of the variables x ∈ X , no element i ∈ {1, . . . , R} is contained in more than γ fraction
of the sets in Fx. By Claim A.6, for such x, at least 1 − `2dγ fraction of the variables in X ′ created
from x have the property that it is impossible to satisfy more than one of their incident constraints
simultaneously. Hence, the number of constraints in Φ′ satisfied by L′ is at most

α` · β · |X| · ` + α`(1− β)|X|
(
(1− `2dγ) + (`2dγ) · `

)

= |X ′| (β` + (1− β)(1− `2dγ) + (1− β)(`2dγ)`
)

≤ |E′|
(

β +
1
`

+ (1− β)`2dγ

)
.

The last lemma transforms a bipartite label cover into a non-bipartite label cover. This trans-
formation no longer preserves the constraint type: d-to-1 constraints become d-to-d constraints.
We first prove a simple combinatorial claim.

Claim A.8 Let A1, . . . , AN be pairwise intersecting sets of size at most T . Then there exists an element
contained in at least N/T of the sets.

Proof: All sets intersect A1 in at least one element. Since |A1| ≤ T , there exists an element of A1

contained in at least N/T of the sets.

For the following lemma, recall from Definition 4.2 that a t-labeling labels each variable with a
set of at most t labels. Recall also that a constraint on x, y is satisfied by a t-labeling L if there are
labels a ∈ L(x) and b ∈ L(y) such that (a, b) satisfies the constraint.

Lemma A.9 There exists an efficient procedure that given an unweighted bipartite d-to-1 label cover in-
stance Φ = (X, Y,Ψ, E) on label sets {1, . . . , R}, {1, . . . , R/d}, with all left-degrees equal to some `, out-
puts an unweighted d-to-d label cover instance Φ′ = (X,Ψ′, E′) on label set {1, . . . , R} with the following
properties:
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• For any β ≥ 0, if there exists a labeling L to Φ in which 1 − β of the X variables have all their `
incident constraints satisfied, then there exists a labeling to Φ′ and a set of 1− β of the variables of X
such that all the constraints between them are satisfied. In particular, if there exists a labeling L to Φ
that satisfies all constraints then there exists a labeling L′ to Φ′ that satisfies all constraints.

• For any β > 0 and integer t, if there exists a t-labeling L′ to Φ′ and a set of β variables of X such
that all the constraints between them are satisfied, then there exists a labeling L to Φ that satisfies at
least β/t2 of the constraints.

Proof: For each pair of constraints (x1, y), (x2, y) ∈ E that share a Y variable we add one con-
straint (x1, x2) ∈ E′. This constraint is satisfied when there exists a labeling to y that agrees with
the labeling to x1 and x2. More precisely,

ψ′x1x2
=

{
(a1, a2) ∈ {1, . . . , R} × {1, . . . , R}

∣∣∣ ∃b ∈ {1, . . . , R/d} (a1, b) ∈ ψx1y ∧ (a2, b) ∈ ψx2y

}
.

Notice that if the constraints in Ψ are d-to-1 then the constraints in Ψ′ are d-to-d.
We now prove the first property. Let L be a labeling to Φ and let C ⊆ X be of size |C| ≥

(1 − β)|X| such that all constraints incident to variables in C are satisfied by L. Consider the
labeling L′ to Φ′ given by L′(x) = L(x). Then, we claim that L′ satisfies all the constraints in Φ′

between variables of C. Indeed, take any constraint between two variables x1, x2 ∈ C. Assume the
constraint is created as a result of some y ∈ Y . Then, since (L(x1), L(y)) ∈ ψx1y and (L(x2), L(y)) ∈
ψx2y, we also have (L(x1), L(x2)) ∈ ψ′x1x2

.
It remains to prove the second property. Let L′ be a t-labeling to Φ′ and let C ⊆ X be a

set of variables of size |C| ≥ β|X| with the property that any constraint between variables of C
is satisfied by L′. We first define a t-labeling L′′ to Φ as follows. For each x ∈ X , we define
L′′(x) = L(x). For each y ∈ Y , we define L′′(y) ∈ {1, . . . , R/d} as the label that maximizes the
number of satisfied constraints between C and y. We claim that for each y ∈ Y , L′′ satisfies at
least 1/t of the constraints between C and y. Indeed, for each constraint between C and y consider
the set of labels to y that satisfy it. These sets are pairwise intersecting since all constraints in Φ′

between variables of C are satisfied by L′. Moreover, since Φ is a d-to-1 label cover, these sets are
of size at most t. Claim A.8 asserts the existence of a labeling to y that satisfies at least 1/t of the
constraints between C and y. Since at least β of the constraints in Φ are incident to C, we obtain
that L′′ satisfies at least β/t of the constraints in Φ.

To complete the proof, we define a labeling L to Φ by L(y) = L′′(y) and L(x) chosen uniformly
from L′′(x). Since |L′′(x)| ≤ t for all x, the expected number of satisfied constraints is at least β/t2,
as required.

B Tightness of Theorem 1.2

Let v be an eigenvector of T whose eigenvalue λ satisfies |λ| = ρ, normalized so that
∑q

i=1 v2
i /q =

1. Assume that λ > 0 (the proof for the case λ < 0 is similar). For any n ≥ 1, define two indicator
functions

f(x1, . . . , xn) =

{
1, 1√

n

∑n
i=1 vxi < µ

0, o.w.
, g(x1, . . . , xn) =

{
1, 1√

n

∑n
i=1 vxi < ν

0, o.w.

where µ and ν are some arbitrary constants. The functions f and g have all of their influences
of order n−1/2. Moreover, by the central limit theorem, if (x1, . . . , xn) is chosen uniformly and
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(y1, . . . , yn) is obtained from it through T⊗n, then the joint distribution of 1√
n

∑n
i=1 vxi and 1√

n

∑n
i=1 vyi

converges to that of two standard normal variables with correlation λ = ρ. From this it follows
that E[f ], E[g], and 〈f, T⊗ng〉 converge to µ, ν, and 〈Fµ, UρFν〉γ respectively. A similar argument
holds for the lower bound.
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