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Summary. We propose a new variant of the mortar method for the lowest or-
der Crouzeix-Raviart finite element for the approximation of second order elliptic
boundary value problems on nonmatching meshes.

1.1 Introduction

The mortar technique (cf. Bernardi et al. (1994); Ben Belgacem (1994)) is the
class of domain decomposition method that allows for nonmatching meshes for
solving partial differential equations. To ensure that the overall discretization
involving the nonmatching meshes makes sense, an optimal coupling between
the meshes is required. In a standard mortar technique, this condition is re-
alized by applying the condition of weak continuity on the solution, called
the mortar condition, saying that the jump of the solution along the inter-
face between two meshes is orthogonal to some suitable test space. Since its
first introduction, the mortar technique has been studied extensively, see Bel-
gacem and Maday (1997); Marcinkowski (1999); Seshaiyer and Suri (1999);
Wohlmuth (2000); Braess and Dahmen (2001), and the references therein.

In order to apply the mortar condition, it is necessary to know the function
on the interface. For the conforming P1 finite element, it is enough to know
the nodal values along the interface. However, for the nonconforming P1 finite
element (the lowest order Crouzeix-Raviart finite element), where the degrees
of freedom are associated with the edge midpoints, see Fig. 1.1, the function on
the interface depends on the nodal values corresponding to interface nodes and
some subdomain interior nodes lying closest to the interface, cf. Marcinkowski
(1999). The purpose of this paper is to modify the mortar condition, so that
the new method will use only the nodal values on the interface. This is a clear
advantage compared to the standard method, especially in 3D. The approach
can also be seen as the mortar method with an approximate constraint, see
Bertoluzza and Falletta (2003) for instance.
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Fig. 1.1. The lowest order Crouzeix-Raviart (CR) finite element (left) and two
nonmatching grids (right). CR basis functions associated with the nodes on the
mortar side, denoted by dots (in the interior) and semi-dots (on the mortar), have
nonzero support on the nonmortar side, denoted by the shaded triangles.

We propose our new mortar variant in Section 1.2, and present its matrix
formulation in Section 1.3. An additive Schwarz preconditioner similar to the
one in Rahman et al. (2004) for the new mortar variant is formulated in
Section 1.4, and finally some numerical results are presented in Section 1.5.

1.2 The new mortar variant

Let £2 C R? be a simply connected bounded domain, partitioned (conforming)
into a collection of nonoverlapping polygonal subdomains, (2;,i = 1,..., N,
such that 2 = |J; £2;. We consider the problem: Find u* € Hg(£2) such that

a(u®,v) = f(v), v € Hy(12), (1.1)

where a(u,v) = YN, Jo,Vu-Vvdz and f(v) = >N, Jo, fv dz. With
each subdomain (2;, we associate a quasi-uniform triangulation 75 (2;) of mesh
size h;. The resulting triangulation can be nonmatching across subdomain
interfaces.

Let X, (f2;) be the nonconforming P1 (Crouzeix-Raviart) finite element
space defined on the triangulation Ty ((2;) of {2;, consisting of functions which
are piecewise linear in each triangle 7 C (2;, continuous at the interior edge
midpoints of 25, and vanishing at the edge midpoints of 0025%N612 lying on
the boundary 02. Here, 23 and 002G F represent the sets of edge midpoints,
i.e., the Crouzeix-Raviart nodal points, of (2; and 0(2;, respectively. In the
same way, we use (2;; and 02, (without the superscript CR) to denote the
corresponding sets of triangle vertices.

Since the triangulations on (2; and {2; do not match on their common
interface I};, the functions in X (£2) = II; X, ((2;) are discontinuous at the
edge midpoints along the interface. In the standard mortar technique, see
Marcinkowski (1999), the condition of weak continuity, called the mortar
condition, is therefore imposed. In this paper, we introduce a new variant
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of the mortar condition. Let 7,;y C 0f2 and 6,y C 0f2; be the mor-
tar and the nonmortar side of the interface I7;;, respectively. Let up € X,
where up, = {u;}¥,. A function u, € X, satisfies the mortar condition on
Om(j) = Lij = Ym(i), it

where I,,, is an interpolation operator, to be defined in the next paragraph,
and Qp, is the L?-projection operator Qn : L*(Ii;) — M"(6,,;)) de-
fined as (Qmu¥)L2(5,,) = (V) L2@5,)s Yy € M"i(6,,;)), where
M"i (8,,(5y) C L*(I;) is the test space of functions which are piecewise con-
stant on the triangulation of d,(;), and (-,-)r2(s,,;,) denotes the L? inner
product on L2 (0m(j))- We note that, for the standard mortar method, I, is
simply the identity.

/ !
T Te Te Ty T Ty Te Le T
i !
he he hl hr he he

Fig. 1.2. Showing u|,, by dotted lines, and Inu|y,, by the solid line.

Let T% (vm) be the triangulation associated with the mortar +,,, which
is obtained as a result of dividing the edges of Tp(vm). Let W (Ym) be the
conforming space of piecewise linear continuous functions on the triangulation
T% (¥m)- The functions of this space are defined by their values at the set Vi 2
of all edge endpoints of 7'% (Ym)- It is easy to see that 7,, h= YER U, uns where

’yﬁﬁ and 7,,, are respectively the sets of edge midpoints and edge endpoints
of Tr(Ym)- We now define the operator I, : Xp(vm) — W (Ym) below.

Definition 1. Foru € Xp(vp), Inu € W () is defined by the nodal values
as

CR
u(z), T € Ymhs

w(z,), T E Ymn, (1.3)
—u(zl)) = € Ovmn.

(
B h
Lnu(z) = Tuthor w(zy) + hith

u(ze) + he’rh; (u(ze)

Here, x; and x, are the left- and the right neighboring edge midpoints of x,
respectively. Correspondingly, h; and h, are the left- and the right edge lengths.
z. and h. are the midpoint and the length of the edge of Tp(Vm), touching Oy, .
The edge midpoint x,, and the edge length h., correspond to the neighboring
edge.
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The interpolation is done basically by first joining the edge midpoints with
piecewise straight lines, and then stretching the two end straight lines to the
end of the mortar v,,, cf. Fig. 1.2. It is not difficult to see that the operator
I,,, preserves all linear functions on the mortar.

Vi C X}, is a subspace of functions which satisfy the mortar condition
for all §,, C S. Since functions of V} are not continuous, we use the bro-
ken bilinear form ay(-,-) defined according to ap(u,v) = Eil ai(u,v) =
Zf;l EreTh( ) (Vu, Vo) 2(;). The discrete problem takes the following form:
Find u} = {u;}}Y; € V}, such that

an(up,vn) = f(vn), Von € Vj. (1.4)

If the h;’s are of the same order h, then the following error estimate can be
shown.

Theorem 1. For allu € V},,

lu* = uj llzage) +hlu® = ujlmy ) < ch® | u” llm2 (o) (1.5)

1.3 Matrix Formulation

Like in the standard mortar case, each basis function of V" is associated with
an edge midpoint either in the interior of a subdomain or on a mortar, and not
on any nonmortar. Let gog) denote a standard nodal basis function of X}, (£2;),

associated with an edge midpoint z; € ﬁic,;R. The basis functions of V" can
be defined as follows. If z € Q%R, a subdomain interior node, then ¢y is
identical with (psj). If z), € 5, (5, @ mortar node, then ¢ (z) = <p,(:) (z) on £2;,
while on 8,,(;), where V) = Oy, Gr(T) = Qm(Imgog))(a:) at x € (Sgg)h.
¢, is zero at the remaining edge midpoints of {2;, and zero everywhere on the
remaining subdomains. Using the basis functions of V},, the problem (1.4) can
be rewritten in the matrix form as

Au* =1, (1.6)

where u* is a vector of nodal values of u}, and A is a matrix generated by
the bilinear form ay(.,.) on V}, x V};,. We shall now see how this matrix can be
obtained from the local matrices E; generated by a;(.,.) on X(£2;) x X5 (£2;).

Observing that ap(.,.) = Ef;l a;i(.,.), where a;(.,.) = an(.,.)|@;, we can
calculate the elements of A from their local contributions restricted to in-
dividual subdomains (2;. In order to calculate the local contribution a;(.,.),
we use only those basis functions that have nonzero supports on f2;. These

basis functions are exactly the ones associated with the nodes of 2G%, 722) b

(Ym(s) C 02;), and the set wgg) n (Ym(G) = Om(i) C 912;) of neighboring mor-
tar edge midpoints except those on 9f2. Let A; be the set of all these nodes,
see Fig. 1.3 for an illustration.
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Let P; be the restriction matrix which is a permutation of a rectangular
identity matrix, such that P;u returns the vector of all coefficients of u, as-
sociated with the nodes of A;. P! is the corresponding extension matrix. Let
E;, associated with the subdomain 2;, be the matrix generated by a;(.,.) on
span{oy : zy € A;} x span{¢; : z; € A;}. Using these three types of matrices,
we can assemble the global matrix as A = Ef;l PIE,P;.

We note that E; = {a,-(¢k, ¢1)}, where z,2; € A;, and E; = {ai(gok,cpl)},

—CR
where zy, 7 € 2, . If 21,2, € OGE U 'ygg)h, then a;(¢x, #1) = ai(pr, 1) If
T € %Cng.) > then the calculation of an element of E; involving ¢, requires
the values of Q. (Imyr)(z,) at the n(ﬁies x, € 622),1, since by definition
or = Ezaeéc?)h Qm(Impr)(xo)po in 2;. In the following, we derive these
coefficients {Qm (Im¢r)(z,)} from the mortar condition.

For a mortar ~,,, let I, be the matrix representation of the interpolation
operator I, : Xp(vm) — W (¥m), whose columns correspond to the nodes
YCR = {9, 24,...,22p} (edge midpoints of T;(ym)), and the rows correspond
to the nodes ¥,,» = {z1,%2,...,Z2p+1} (edge midpoints of T% (vm)), along
the mortar v,,. Let h; = |Z2;—1 — Z2i41], then

_ By —hy -
(1 + h1+h2) hi+he
1
ho hi
hi+hso hi+hsa
1
hs
ho+hs
hi—1
* hi—1+h;
L, = 1
m hiq1
hi+hiy1
*
hn_2
hn—2+hn_1
hn hn_1
hn—1+hn hn—1+hn
1
—hn hn
el Ol

We assume that the subdomain (2; has only one nonmortar side d,,(;), cf.
Fig. 1.3, the extension to more than one nonmortar edge is straightforward.

Let the master matrix be M

TYm(5)

= {(Imﬂok;wo)LZ((;m(i))}, and the slave ma-

trix be S5, . = {(1,%0)L2(5,0s)) }» Where Ty, € 'ygﬁ.)h and z;,z, € 6CR)h. Let

m(i

&, be the basis function of W%, associated with the edge midpoint z,, € Tt -

Then

Om(i) = Sgl M

Ym(3)

=S, N,..,I

m(i)  Im(i) T
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Fig. 1.3. Showing 2; with one nonmortar side and the corresponding set A; of edge
midpoints shown as dots (in the interior) and semi-dots (on the mortars).

is the matrix representation of the mortar projection QI @ Xi(Vm(;)) —

M" (8,n3)), where N, - = {(€n,%0) L2(5,0(i)) } With o € Tm(j)s and o €
(Sgﬁ.) 4~ The columns of this matrix correspond to the nodes z) € ng.) b
containing exactly the coefficients {Qm (Impr)(z,)}. We note that S;,, . is a
diagonal matrix containing the lengths of the edges along d,,(;) as entries.

Now define the matrix O; = diag(I,Oy,(;)), where I is the identity matrix
corresponding to the nodes of 2% and fyf;;(i) 4> and Oy, ;) is the mortar pro-
jection matrix corresponding to the nodes of 'ygg) - Then it is easy to see
that E; = OTE;0;. Finally, we have A = Y  PTOTE;0;P;. In the same
way, we get f = Y PTOTE;.

1.4 An additive Schwarz method

In this section, we design an additive Schwarz method for the problem (1.4),
which is an extension of the algorithm in Rahman et al. (2004) for the standard
mortar case, to the new mortar variant. The method is defined using the
general framework for additive Schwarz methods (cf. Smith et al. (1996)).
We decompose Vi, as Vj, = VS + V0 + Zfil Vi.Fori = 1,...,N, Viis
the restriction of V3, to (2;, with functions vanishing at subdomain boundary
edge midpoints 0023 as well as on the remaining subdomains. V¥ is a space
of functions given by their values on the skeleton edge midpoints SfF =
U, 7oms Ve ={v € Vi 1 v(z) = 0, = € ﬁSR \ S¢B}. The coarse space
V9, a special space having a dimension equal to the number of subdomains,
is defined using the function x; € Xp(f2;) associated with the subdomain
§2;. xi is defined by its nodal values as: x;(z) = 1/, p;(z) at z € ﬁic,;R,
where the sum is taken over the subdomains f2; to which = belongs, and
p; =1, ¥j. Note that the p;’s may represent physical parameters with jumps
across interfaces, see Rahman et al. (2004). V° is given as the span of its
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basis functions, ¢;,i = 1,..., N, i.e., V° = span{®; : i = 1,..., N}, where &;
associated with (2;, is defined as follows.

( 1, T € NGE,
pin'(x); T € ’th}z)ha
PiQm(Imx;) (@), € 8yny Om(i) = Ym(s),
P.(x) = { m(i)h J 1.7
@ =9 i QnTmx) @), ©€0CE L Gy = iy, )
pix;(@), T € Wﬁ(gh, Ym(i) = Om(i)
\ 0, € 0057 N 80,

and @;(z) = 0 at all other z in ﬁSR. We use exact bilinear forms for all our
subproblems. The projection like operators T : V}, — V¢ are defined in the
standard way, i.e., for i € {S,0,..., N} and u € V3, T?u € V' is the solution
of ap(Ttu,v) = ap(u,v), v € Vi. Let T =TS +T° + T' + ... + TN. The
problem (1.4) is now replaced by the preconditioned system

Tuy, =g, (1.8)

where g = TSuj, + Eé\io T'u;. Let ¢ and C represent constants independent
of the mesh sizes h = inf; h; and H = max; H;, then the following theorem
holds.

Theorem 2. For all u € V},
c%ah(u,u) < ap(Tu,u) < Cap(u,u). (1.9)

The theorem can be shown in the same way as the proof in Rahman et al.
(2004), which uses the general theory for Schwarz methods, cf. Smith et al.
(1996). It follows from the theorem that the condition number of the operator

H
T grows as 7.

1.5 Numerical results

For the experiment, we consider our model problem to be defined on a unit
square domain, {2, with the forcing function f so chosen that the exact so-
lution u is equal to sin(wz)sin(ny). The domain {2 is initially divided into
32 = 9 square subdomains (subregions). Each subdomain is then discretized
uniformly using, in a checkerboard fashion, either 2m? or 2n? right angle tri-
angles of equal size, where m and n are fixed and m # n resulting in a grid
which is nonmatching across all interfaces.

A comparison between the standard and the proposed mortar technique for
the Crouzeix-Raviart finite element is shown in Table 1.1. The Preconditioned
Conjugate Gradients (PCG) method has been used to solve the resulting
algebraic systems with their respective additive Schwarz preconditioners. As
seen from the table, the numerical results agree with the theory. The proposed
method exhibits a similar behavior as that of the standard method.
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Table 1.1. Condition number estimates (k2), PCG-iteration counts (#iter), and
L?-norm (error;2) and H'-seminorm (errory1) of the error in each case.

{m,n} Standard CR Mortar Proposed CR Mortar

Ko  FHiter errorp2  erroryi Ko  Fiter errory;e  errorgi

{06,05} 28.85 25 0.002020 0.065293 30.11 23 0.002484 0.078409
{12,10} 63.44 35 0.000497 0.032843 60.90 31 0.000667 0.038768
{24,20} 134.18 49 0.000123 0.016479 122.55 45 0.000175 0.019321
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