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This paper discusses the Schur complement viewpoint when developing paral-
lel preconditioners for general sparse linear systems. Schur complement meth-
ods are pervasive in numerical linear algebra where they represent a canonical
way of implementing divide-and-conquer principles. The goal of this note is
to give a brief overview of recent progress made in using these techniques for
solving general, irregularly structured, sparse linear systems. The emphasis
is to point out the impact of Domain Decomposition ideas on the design of
general purpose sparse system solution methods, as well as to show ideas that
are of a purely algebraic nature.

1.1 Distributed sparse linear systems

The parallel solution of a linear systems of the form

Ax = b, (1.1)

where A is an n × n large sparse matrix, typically begins by subdividing the
problem into p parts with the help of a graph partitioner [25, 14, 16, 24,
9, 17]. Generally, this consists of assigning sets of equations along with the
corresponding right-hand side values to ‘subdomains’. It is also typical that if
equation number i is assigned to a subdomain then so is also unknown number
i, so in reality it is pairs of equations and unknowns that are assigned. Thus,
each processor holds a set of equations (rows of the linear system) and vector
components associated with these rows.

This distinction is important when taking a purely algebraic viewpoint
because for highly unstructured or rectangular (least-squares) systems, this
is no longer a viable or possible strategy and one needs to reconsider the
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standard graph partitioning approach used in Domain Decomposition. The
next section is a brief discussion of graph partitioning issues.

Graph partitioning. Figure 1.1 shows two standard ways of partitioning a
graph. On the left side is a ‘vertex’ partitioning which is common in the sparse
matrix community. A vertex is a pair equation-unknown (equation number i

and unknown number i) and the partitioner subdivides the vertex set into p

partitions, i.e., p non-intersecting subsets whose union is equal to the original
vertex set. On the right side of Figure 1.1, is a situation which is a prevalent
one in finite element methods. Here it is the set of elements (rectangular in
this case) that is partitioned. One can call this an element-based partitioning,
or, alternatively, an ‘edge-based partitioning’, since in this case it also corre-
sponds to assigning edges to subdomains. There are differences between the
two viewpoints, in the way in which the Schur complement is represented.
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Fig. 1.1. Two classical ways of partitioning a graph.

The simplest criterion used to partition a graph is to try to minimize
communication costs and to ensure at the same time that the work load
between processors is well balanced. In this strategy, it is common to model
communication costs by counting the number of edge-cuts, i.e., edges that
link vertices in different subdomains. Graph partitioners such as Metis [16]
and Chaco [14], attempt to partition graphs with the quality measures just
mentioned, in mind. However, a simple look at a general graph will reveal
that edge-cuts will not lead to a good model for communication costs. For
example, in the situation where there are k edges connecting a single vertex to
k vertices located on a different subdomain, we would count k edge-cuts while
only one actual communication should take place when exchanging interface
data between neighboring processors during execution.

This observation was exploited in [9] to devise partitioners which lead to re-
duced communication costs. The authors of [9] used the notion of Hypergaphs
for this purpose. Hypergraphs, which were initially employed by researchers
in CAD to partition electronic circuits, are generalizations of graphs, in which
edges are sets (called hyperedges or nets) which consist of several vertices, in-
stead of just two. Figure 1.2 shows a sparse matrix along with its traditional
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graph representation. Figure 1.3 shows the hypergraph obtained by defining
hyper-edges to be the sets of column entries for each row. A hyperedge is rep-
resented by a square. Thus, hyperedge h6, which corresponds to the 6-th row
of the matrix, is the set of the 3 vertices: 1, 6, and 8, as indicated by the links
from h6 (square) to the vertices 1, 6, and 8 (bullets). Similarly h7 = {1, 2, 7, 8}.

Note that from one viewpoint, this new representation is really that of
a bipartite graph, since the nodes represented by a hyperedge (squares) are
linked only to vertices of the graph (bullets). Models similar to the one just
illustrated, i.e., based on seting hi to be the set of column entries of row i,
are the most common in hypergraph partitioning as they tend to yield better
cost models for communication, see, [9]. Gains in communication will help
reduce the overall run time but these gains are typically in the order of 10-
30%, and they often represent a small portion of the overall execution time.
One may ask whether or not the gains could be outweighed by the cost of a
higher iteration count. In fact, experimental results suggest that hypergraph
partitioning yields as good if not better quality partitionings from the point of
convergence. More importantly, we believe that the generality and flexibility
of hypergraph models has not yet been fully exploited in Domain Decompo-
sition. Though it is difficult to rigorously build a partitioning that will yield
an ‘optimal’ condition number for the preconditioned matrix, heuristic argu-
ments, see, e.g., [29], may help obtain criteria that can help build good models
based on weighted hypergraphs. We are currently working on strategies based
on this viewpoint [28].
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Fig. 1.2. A small sparse matrix and its classical graph representation.

Another potential use of hypergraphs is for solving very irregularly struc-
tured problems which do not come from discretized PDEs. In these situations,
the adjacency graph of the matrix may be directed (i.e., pattern of A is non-
symmetric), a situation which is not handled by standard partitioners. As a
remedy it is common to symmetrize the graph before partitioning it. While
this is reasonable for most problems arising from PDEs, it can be wasteful,
or may not even be possible, for severely nonsymmetric matrices or for least-
squares (rectangular) systems. Domain decomposition ideas can be extended
to such problems with the help of hypergraphs [13] or the closely related bi-
partite models [17]. The partitioning problem now is to subdivide both the
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Fig. 1.3. One possible hypergraph representation of the matrix in Figure 1.2.

‘inputs’ and the ‘outputs’ as can be easily explained with the help of matrix-
vector products y = Ax. In standard partitioning the input vector x (the
unknowns in the terminology used above) and the output vector y (equations
in the terminology used above) are partitioned in the same way. In the non-
symmetric partitioning case, a different partitioning is employed for x and
y.

The local system. Once a graph is partitioned, it is common to distinguish
between three types of unknowns: (1) Interior unknowns that are coupled only
with local equations; (2) Local interface unknowns that are coupled with both
non-local (external) and local equations; and (3) External interface unknowns
that belong to other subdomains and are coupled with local equations. It is
customary to reorder local points in each subdomain so that the interface
points are listed last after the interior points. With this local ordering, each
local vector of unknowns xi is split into two parts: the subvector ui of inter-
nal vector components followed by the subvector yi of local interface vector
components. The right-hand side bi is conformally split into the subvectors fi

and gi.
When block partitioned according to this splitting, the local system of

equations can be written as follows,

(
Bi Fi

Ei Ci

)

︸ ︷︷ ︸

Ai

(
ui

yi

)

︸ ︷︷ ︸

xi

+

(
0

∑

j∈Ni
Eijyj

)

=

(
fi

gi

)

︸ ︷︷ ︸

bi

. (1.2)

Here, Ni is the set of indices for subdomains that are neighbors to the subdo-
main i. The term Eijyj is a part of the product which reflects the contribution
to the local equation from the neighboring subdomain j. The result of this
multiplication affects only local interface equations, which is indicated by zero
in the top part of the second term of the left-hand side of (1.2).
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1.2 Schur complement techniques

Schur complement techniques consist of eliminating interior variables to define
methods which focus on solving in some ways the system associated with the
interface variables. Schur complement systems are derived by eliminating the
variable ui from (1.2). Extracting from the first equation ui = B−1

i (fi −Fiyi)
yields, upon substitution in the second equation,

Siyi +
∑

j∈Ni

Eijyj = gi − EiB
−1

i fi ≡ g′i, (1.3)

where Si is the “local” Schur complement

Si = Ci − EiB
−1

i Fi. (1.4)

The equations (1.3) for all subdomains (i = 1, . . . , p) constitute a linear
system involving only the interface unknown vectors yi. This reduced system
has a natural block structure:







S1 E12 . . . E1p

E21 S2 . . . E2p

...
. . .

...
Ep1 Ep,2 . . . Sp







︸ ︷︷ ︸

S







y1

y2

...
yp







︸ ︷︷ ︸

y

=







g′1
g′2
...
g′p







︸ ︷︷ ︸

g′

. (1.5)

The diagonal blocks in this system, the local Schur complement matrices Si,
are dense in general. The off-diagonal blocks Eij , which are identical with
those of the local system (1.2) are sparse.

If we were able to solve the global Schur complement system (1.5) then
the solution to the global system (1.1) would be trivially obtained by substi-
tuting the yi’s into the first part of (1.2). A key idea in domain decomposition
methods is to develop preconditioners for the global system (1.1) by exploiting
methods that approximately solve the Schur complement system (1.5).

A class of such preconditioners implemented in the pARMS library [19] re-
lies on this general approach. The system (1.5) is preconditioned in a number
of ways, the simplest of which is to use a Block-Jacobi preconditioner exploit-
ing the block structure of (1.5). Note that the Si’s are not explicitly computed.
Indeed, assuming the notation (1.2), and considering the LU factorization of
Ai, we note that

If Ai =

(
LBi

0
EiU

−1

Bi
LSi

) (
UBi

L−1

Bi
Fi

0 USi

)

then LSi
USi

= Si .

This yields the LU or ILU factorization of Si as a by-product of the (I) LU
factorization of the local matrix Ai. Setting up the preconditioner is an entirely
local process which only requires the (I) LU factorization of Ai.
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Other Schur complement preconditioners available in pARMS include
methods which solve the system (1.5) approximately by a parallel (multicolor)
version of the ILU(0) preconditioner, and a multicolor block Gauss-Seidel it-
eration (instead of block Jacobi). In general these work better than the simple
block Jacobi technique discussed above. For details see [19].

Use of independent sets. Independent set orderings permute a matrix into
the form (

B F

E C

)

(1.6)

where B is diagonal. The unknowns associated with the B block form an
independent set (IS), which is said to be maximal if it cannot be augmented by
other nodes to form a bigger independent set. Finding a maximal independent
set can be done inexpensively by heuristic algorithms [10, 18, 26].

The main observation here is that the Schur complement S = C−EB−1F

associated with the above partitioning of the matrix is again a sparse matrix in

general since B is diagonal. Therefore, one can think of applying the reduction
recursively as is illustrated in Figure 1.4. When the reduced system becomes

Fig. 1.4. Three stages of the recursive ILUM process

small enough then it can be solved by any method. This is the idea used in
ILUM [26], and in a number of related papers [8, 7, 6].

The notion of independent sets can easily be extended to ‘group indepen-
dent sets’, in which the matrix B is allowed to be block-diagonal instead of
just diagonal. In other words, we need to find “groups” or “aggregates” of
vertices which are not coupled to each other, in the sense that no node from
one group is coupled with a node of another group. Coupling within any group
is allowed. The simplest illustration of group independent sets, is that of the
classical line red-black ordering used for regular grids [32]. Just like in the
standard independent sets ordering, we label the nodes of the independent set
first, followed by the rest. This yields a matrix of the form (1.6) but now B

is block diagonal.
Define the matrix at the zeroth-th level to be A0 ≡ A. The Algebraic

Recursive Multilevel Solver algorithm (ARMS), see [30], is based on an ap-
proximate block factorization of the form

PlAlP
T
l =

(
Bl Fl

El Cl

)

≈

(
Ll 0

ElU
−1

l I

) (
I 0
0 Al+1

) (
Ul L−1

l Fl

0 I

)

. (1.7)
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Here, LlUl is an Incomplete LU factorization of Bl, i.e., Bl ≈ LlUl and Al+1

approximates the Schur complement, so, Al+1 ≈ Cl − (ElU
−1

l )(L−1

l Fl). The
matrix Al+1 is the coefficient matrix for the linear system at the next level.
It remains sparse because of the ordering selected (group independent sets)
and due to the dropping of smaller terms. The L-solves associated with the
above block factorization amount to a form of restriction in the PDE context,
while the U -solve is similar to a prolongation. Note that the algorithm is fully
recursive. At the last level (selected in advance, or by exhaustion) a simple
ILU factorization is used instead of the one above.

1.3 Highly indefinite problems: nonsymmetric orderings

Perhaps one of the most significant advances on “general purpose iterative
solvers” of the last few years is the realization that permuting a matrix in a
nonsymmetric way, before applying a preconditioning, can lead to a robust
iterative solution strategy [12, 11, 2]. By permuting A nonsymmetrically we
mean a transformation of A of the form PAQT , where P and Q are two differ-
ent permutations. In particular, a significant difference between this situation
and the standard one where P = Q, is that non-diagonal entries will be moved
into the main diagonal. In fact the gist of these methods is to move large en-
tries of the matrix into the diagonal. This was explored for many years by
researchers in sparse direct methods, as a means of avoiding dynamic pivot-
ing in Gaussian elimination [23].

In [11, 12], a (one-sided) permutation P was sought by attempting to
maximize the magnitude of the product of the diagonal entries of PA. Here
we briefly outline a method which also attempts to place large entries on the
diagonal, by using a more dynamic procedure based on Schur complements.
The idea here is to adapt the ARMS algorithm outlined earlier by exploiting
nonsymmetric permutations. We will find two permutations P (rows) and Q

(columns) to transform A into

PAQT =

(
B F

E C

)

. (1.8)

No particular structure is assumed for the B block. The only requirement
on P, Q is that for the resulting matrix (1.8), the B block has the ‘most
diagonally dominant’ rows (after nonsym perm) and few nonzero elements (to
reduce fill-in). Once the permutations are found and the matrix is permuted
as shown above, we can proceed exactly as for ARMS by invoking a multi-
level procedure. So, at the l-th level we reorder A into PAQT , and then carry
out an approximate block factorization identical with that of (1.7), except
that the left-hand side is now PAQT instead of PAP T . The rationale for
this approach is that it is critical to have an accurate and well-conditioned B

block, [3, 5, 4]. In the case when B is of dimension 1, one can think of this
approach as a form of complete pivoting ILU.
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The B block is defined by the Matching set M which is a set of nM

pairs (pi, qi) where nM ≤ n with 1 ≤ pi, qi ≤ n for i = 1, . . . , nM and
pi 6= pj , for i 6= j qi 6= qj , for i 6= j The case nM = n yields the (full)
permutation pair (P, Q). A partial matching set can be easily completed into
a full pair (P, Q) by a greedy approach.

The algorithm to find permutation consists of 3 phases. First, a preselection

phase is invoked to filter out poor rows by employing a criterion based on
diagonal dominance. The main goal of this preselection phase is only to reduce
the cost of the next phase. Second, a matching phase scans candidate entries
in order given by the preselection algorithm and accepts them into the M set,
or rejects them. Heuristic arguments, mostly based on greedy procedures, are
used for this. Finally, the third phase completes the matching set to obtain a
pair of (full) permutations P, Q, using a greedy procedure.
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Fig. 1.5. Illustration of the greedy matching algorithm. Left side: a matrix after
the preselection algorithm. Right side: Matrix after Matching permutation.

An illustration of the matching procedure is shown in Figure 1.5. The left
side shows a certain matrix after the preselection procedure. The circled en-
tries are the maximum entries in each row and they are assigned a rank based
on the diagonal dominance ratio (the higher the better) and possibly the num-
ber of nonzero entries in the row (the fewer the better). The greedy matching
algorithm will simply traverse these nodes and in the order by which they are
ranked, and then determine whether or not to assign the node to M. Thus,
entries labeled 1 (a74 in original matrix) and 2 (a4,6 in original matrix) are
accepted. Entry labeled 3 (a86) is not because it is already in the same column
as a4,6. The algorithm continues in this manner until exhaustion of all nodes.
This yields a partial permutation pair which is then completed arbitrarily. The
matrix on the right shows the permuted matrix. The B block, separated by
longer dash lines, is then eliminated and the process is repeated recursively on
the Schur complement, in the same manner as the ARMS procedure. Details
can be found in [27], along with a few more elaborate matching procedures.

As an example, Figure 1.6 shows an algorithm of this type in action for
a highly indefinite and unstructured matrix, BP1000, obtained from the old
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Fig. 1.6. The Diagonal Dominance PQ-ordering in action for a highly unstructured
matrix.

Harwell-Boeing collection 2. The matrix pattern is shown in the top left part
of the figure. Most of the diagonal entries of the matrix are zero and as a result
standard iterative methods will fail. Five levels are required by the procedure
with the last block reaching a size of n = 60. With this the resulting precon-
ditioning, GMRES converges in 17 steps. In addition this is achieved with a
’fill-factor’ of 2.09, i.e., the ratio of the memory required for the preconditioner
over that of the original matrix is 2.09. For additional experiments of more
realistic problems see [27].

1.4 Wirebaskets and hierarchical graph decomposition

It was often observed in the domain decomposition literature that “cross
points” play a significant role. This was exploited in [31] in a method known
as wirebasket preconditioner. Recently we have considered a method of the
same type from an algebraic viewpoint [15]. This algorithm, called Parallel
Hierarchical Interface Decomposition ALgorithm (PHIDAL), descends recur-
sively into interface variables, by exploiting a hierarchy of ’interfaces’. Its main
difference with the parallel version of ARMS, is that it uses a static ordering

2 See http://math.nist.gov/MatrixMarket/
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instead of a dynamic one. This results in fast preprocessing and, potentially,
better parallelism.

To explain the algorithm, consider a graph G that is partitioned into p sub-
graphs. However, we now consider an edge-based partitioning, i.e., there are
overlapping vertices. The illustration on the left side of Figure 1.7 shows the
graph of a matrix associated with a 5-point FD discretization of a Laplacean
on a 2-D domain. One can distinguish three types of nodes: interior, interface,
and cross-points. Imagine now that we order the nodes according to this di-
vision: we would label all interior points first, followed by the interface points
followed by the cross-points. Of course the points in the same set (in this case
whether interior nodes, domain edges) are always labeled together. The result
of this reordering would be the matrix shown on the right of Figure 1.7. We re-
fer to the connected subsets as “connectors”. The interiors of the subdomains
as well as the domain edges are connectors, as are the cross-points.

Domain

Edges

Points

Interior

Point
Cross-

Fig. 1.7. A small finite difference mesh (left); Pattern of the matrix after the HID
ordering.

This ordering is very appealing for parallel processing. If we do not al-
low any fill-in between the connectors, then the factorization will proceed in
parallel at each level. For this example, there are 3 levels: one for the inte-
rior points, the second is that of the domain edges, and the 3rd is that of
the cross-points. An idea similar to the one discussed here was described in
[20, 21] including some analysis [22], though the setting was that of regular
meshes. In [15], the above decomposition was extended to general graphs.

An extention of the above definition requires to partition the graph into

levels of subgraphs with the requirements that the subgraphs at a given level

separate those at lower levels. We will call a connector a connected component
in graph; A level is a set of connectors. The requirements are: (1) Connectors
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at any level should separate connectors of previous levels; (2) Connectors of
same level are not coupled (just as in ARMS).

One of the simplest (and clearly not the best) ways to obtain this de-
composition is to use the number of domains to which a node belongs. We
can label each node u with list key(u) of domains to which it belongs and
then define the Level k to be the set of nodes such that |key(u)| = k + 1, for
k = 1, 2, . . . ,. The next task would be to refine the labeling of the connectors
to make them independent. The simplest refinement is based on a greedy ap-
proach which would relabel a connector by a higher label if it is connected
to another connector of the same level. There are many possible refinements,
and the reader is referred to [15] for details.

By reordering the nodes hierarchically at the outset, it is possible to create
Schur complements that can be made sparse. Once a Schur complement at
a given level is constructed it is then possible to create another level. The
two important ingredients of this procedure are: (1) algorithms for building a
good levelization (few levels); and (2) good combination of effective dropping
strategies and parallel incomplete factorization. Results shown in [15] indicate
almost perfect scalability for simple model problems (Poisson’s problem on a
regular mesh) and good scalability for a much harder problem issued from a
Magneto Hydrodynamics problem.

1.5 Concluding remarks

Schur complement techniques can lead to very successful parallel or sequen-
tial iterative procedures for solving general sparse linear systems. One of the
most important ingredients that is exploited when taking a purely algebraic
viewpoint is to reorder the equations in such a way that the next Schur com-
plement is again sparse. This is exploited in techniques such as MRILU [8, 7]
and ILUM [26], MLILU [1] and the closely related ARMS [30], and in PHI-
DAL [15]. Some of these techniques have their analogue in the classical DD
literature, a good example being the PHIDAL preconditioner. Other types
of reorderings exploit nonsymmetric permutations in order to first eliminate
the easier equations. These techniques do not have obvious analogues in the
classical DD literature. Because they represent an important set of tools to
bridge the gap between the robustness of iterative methods and that of di-
rect solvers, their extension to parallel computing environments, which is still
lacking, is of critical importance.
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