
PROBABILITY II, SPRING 2022.

HOMEWORK PROBLEMS

PROF. YURI BAKHTIN

Instructions. Please submit your solutions via Brightspace. Late home-
work will not be accepted.

You must type/write on the first page of the assignment paper:
I have neither given nor received unauthorized help when working on this
assignment.

You are allowed to use books or existing electronic/online materials to
solve the problems. You are allowed to work on solutions in groups, but you
are required to write up solutions on your own. You are not allowed to seek
any other external help for specific problems. You are also not allowed to
post your solutions online.

You must give complete solutions, all claims need to be justified.
Please let me know if you find any misprints or mistakes.

1. Due by Friday Feb 25, 2:00pm

1. Let (Xn)n∈N be an i.i.d. positive sequence on some probability space
(Ω,F ,P), and Sn = X1 + . . .+Xn. Let Nt = sup{n : Sn ≤ t}. Prove that
St = S[t] and (Nt)t∈R+ are stochastic processes.

2. Let v1, v2 : R2 → R2 be C∞ bounded vector fields on R2. Let Nt be
defined as in the previous problem. Let i(n) = 1 if n is odd and i(n) = 2
if n is even.

Let Zt denote the solution of the ODE

d

dt
Zt = vi(Nt)(Zt), Z0 = x.

Prove that (Zt)t≥0 is a stochastic process.
3. Prove that cylinders C(t1, . . . , tn, B), B ∈ B(Rn), t1, . . . , tn ≥ 0, n ∈ N

form an algebra.
4. Prove that elementary cylinders C(t1, . . . , tn, B1×. . .×Bn), B1, . . . , Bn ∈
B(R), t1, . . . , tn ≥ 0, n ∈ N form a semi-ring C (i.e., (i) ∅ ∈ C, (ii) if
A,B ∈ C, then A ∩ B ∈ C, (iii) if A,B ∈ C, then there is n and disjoint
C1, . . . , Cn ∈ C such that A\B = C1∪· · ·∪Cn). [A reminder that does not
help to solve the problem but just fyi: when extending measures onto the
entire σ-algebra one can start with an algebra or just with a semi-ring.]

5. We can define the cylindrical σ-algebra as the σ-algebra generated by
elementary cylinders or by cylinders. Prove that these definitions are
equivalent.
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6. Let FT = σ{C(t1, . . . , tn, B) : t1, . . . , tn ∈ T} for T ⊂ T.
Prove that

B(RT) =
⋃

countable T⊂T
FT .

7. Prove that X : T×Ω→ R is a stochastic process iff X seen as X : Ω→ RT

is (Ω,F)→ (RT,B(RT)) measurable.
8. Use characteristic functions to prove the existence of a Wiener process

(up to continuity of paths).
9. Let (Xt)t∈[0,1] be an (uncountable) family of i.i.d. r.v.’s with nondegen-

erate distribution. Prove that no modification of this process can be
continuous.

10. A multidimensional version of the Kolmogorov–Chentsov theorem. Sup-
pose d ≥ 1, and there is a stochastic field X : [0, 1]d×Ω→ R that satisfies
E|X(s)−X(t)|α ≤ C|s− t|d+β for some α, β, C > 0 and all t, s ∈ [0, 1]d.
Prove that there is a continuous modification of X on [0, 1]d.

11. Show that the Kolmogorov–Chentsov theorem cannot be relaxed: in-
equality E|Xt − Xs|α ≤ C|t − s| holding for some α > 0 and all t, s is
not sufficient for existence of a continuous modification. Hint: consider
the following process: let τ be a r.v. with exponential distribution, and
define Xt = 1{τ≤t}.

12. Prove that there exists a Poisson process (a process with independent
increments that have Poisson distribution with parameter proportional
to the length of time increments) such that:
(a) its realizations are nondecreasing, taking only whole values a.s.
(b) its realizations are continuous on the right a.s.
(c) all the jumps of the realizations are equal to 1 a.s.

13. Give an example of a non-Gaussian 2-dimensional random vector with
Gaussian marginal distributions.

14. Let Y ∼ N (a,C) be a d-dimensional random vector. Let Z = AY where
A is an n × d matrix. Prove that Z is Gaussian and find its mean and
covariance matrix.

15. Prove that an Rd-valued random vector X is Gaussian iff for every vector
b ∈ Rd, the r.v. 〈b,X〉 is Gaussian.

16. Prove that (s, t) 7→ t∧s defined for s, t ≥ 0 is positive semi-definite. Hint:

〈1[0,t],1[0,s]〉L2(R+) = t ∧ s.

17. Prove that c : (s, t) 7→ e−|t−s| is positive semi-definite on R, finding an
auxiliary Hilbert space H and a family ht ∈ H such that 〈ht, hs〉 = c(s, t)
for all t, s.

18. Prove that if X is a Gaussian vector in Rd with parameters (a,C) and
C is non-degenerate, then the distribution of X is absolutely continuous
w.r.t. Lebesgue measure and the density is

pX(x) =
1

det(C)1/2(2π)d/2
e−

1
2
〈C−1(x−a),(x−a)〉.
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19. Use the Chentsov–Kolmogorov theorem to find some condition on the
mean a(t) and covariance function c(s, t) that guarantees existence of a
continuous Gaussian process with these parameters. This asks for some
nontrivial reasonable conditions (do not just say let a and c be identical
zero or constant) but it does not have to be very general.

20. Suppose (X0, X1, . . . , Xn) is a (not necessarily centered) Gaussian vector.
Show that there are constants c0, c1, . . . , cn such that

E(X0|X1, . . . , Xn) = c0 + c1X1 + . . .+ cnXn.

Your proof should be valid irrespective of whether the covariance matrix
of (X1, . . . , Xn) is degenerate or not.

21. Consider the standard Ornstein–Uhlenbeck process X (Gaussian process

with mean 0 and covariance function c(s, t) = e−|t−s|).
(a) Prove that X has a continuous modification.
(b) Find E(X4| X1, X2, X3).

22. Prove that for every centered Gaussian process X with independent in-
crements on R+ = [0,∞) (X(t) −X(s) is required to be independent of
σ(X(r), r ∈ [0, s]) for t ≥ s ≥ 0), there is a nondecreasing nonrandom
function f : R+ → R+ such that X has the same f.d.d.’s as Y defined by
Y (t) = W (f(t)), for a Wiener process W .

23. Let µ be a σ-finite Borel measure on Rd. Prove existence of Poisson point
process and (Gaussian) white noise with leading measure µ.

In both cases, the process X we are interested in is indexed by Borel
sets A with µ(A) < ∞, with independent values on disjoint sets, with
finite additivity property for disjoint sets and such that
(a) X(B) is Poisson with parameter µ(B) (for Poisson point process).
(b) X(B) is centered Gaussian with variance µ(B) (for white noise).

24. Suppose the process Xt is a Gaussian process, and let H be the Hilbert
space generated by (Xt)t∈R, i.e., the space consisting of L2-limits of linear
combinations of values of Xt. Prove that every element in H is a Gaussian
r.v.


