
PROBLEMS FOR PROBABILITY: LIMIT THEOREMS I

PROF. YURI BAKHTIN

Instructions. You are allowed to work on solutions in groups, but you
are required to write up solutions on your own. Please give complete solu-
tions, all claims need to be justified. Late homework will not be accepted.

Please let me know if you find any misprints or mistakes.

1. Due by September 24, 3:30pm (Initially a different date was
posted here by mistake)

1. A family F of subsets of a set Ω is called a σ-algebra if
(a) ∅ ∈ F ,
(b) A ∈ F =⇒ Ac ∈ F ,
(c) An ∈ F for all n ∈ N =⇒

⋂
n∈NAn ∈ F .

Prove that if one replaces (c) with
(c’)An ∈ F for all n ∈ N =⇒

⋃
n∈NAn ∈ F ,

one will obtain an equivalent definition.
2. Prove that for any two sets A,B ∈ F ,

P(A ∪B) = P(A) + P(B)− P(A ∩B).

More generally, find and prove a similar expression (inclusion-exclusion
formula) for P(∪ni=1Ai).

3. Let I be a family of σ-algebras on a set Ω. Prove that
⋂
G∈I G is also a

σ-algebra. Show that
⋃
G∈I G is not necessarily a σ-algebra.

4. Let P be a finitely additive function on an algebra A of subsets of Ω, with
values in [0,+∞). Prove that the following statements are equivalent:
(a) If A1, A2, . . . ∈ A are disjoint and

⋃
An ∈ A, then

P(
⋃
n∈N

An) =
∑
n∈N

P(An).

(b) If A1, A2, . . . ∈ A, An ⊂ An+1 for all n, and
⋃
n∈NAn ∈ A, then

P(
⋃
n∈N

An) = lim
n→∞

P(An).

(c) If A1, A2, . . . ∈ A, An ⊃ An+1 for all n, and
⋂
n∈NAn ∈ A, then

P(
⋂
n∈N

An) = lim
n→∞

P(An).

(d) If A1, A2, . . . ∈ A, An ⊃ An+1 for all n, and
⋂
n∈NAn = ∅, then

lim
n→∞

P(An) = 0.

1



2 PROF. YURI BAKHTIN

5. Let (Xn)n∈N be a bounded sequence of r.v.’s (i.e., there is a constant
C > 0 such that |Xn(ω)| ≤ C for all n and ω). Prove that lim infn→∞Xn

is a r.v.
6. Give an example of a probability space (Ω,F ,P), a sequence of r.v.’s

(Xn)n∈N and a r.v. X, such that {Xn 6→ X} 6= ∅ but Xn → X a.s.
7. Give an example of a probability space (Ω,F ,P), a sequence of r.v.’s

(Xn)n∈N such that Xn
P→ 0 but P{ω : Xn(ω) 6→ 0} = 1.

8. Prove that if Xn
P→ X, then there is a deterministic sequence (nk)k∈N,

limk→∞ nk =∞ such that Xnk
a.s.→ X.

9. Prove the first part of the Borel–Cantelli Lemma: Denoting

{An i.o.} = lim supAn =
⋂
n∈N

⋃
k≥n

Ak,

prove that
∑

n∈N P(An) < ∞ implies P{An i.o.} = 0. (“i.o.” stands for
“infinitely often”).

10. Let (xn)n∈N be a number sequence. Let us define An = (−∞, xn). Prove
that and A = lim supAn (the latter is defined in the previous problem)
equals either (−∞, x) or (−∞, x], where x = lim supxn.

11. Find an example of (Ω,F ,P) and r.v.’s Xn such that Xn → 0 a.s., but
EXn 6→ 0.

12. The function f(x) = 1Q(x) is Lebesgue-integrable and not Riemann-
integrable on [0, 1]. Why?

13. Let X be a nonnegative r.v. Prove that EX < ∞ iff (if and only if)∑
n∈N P{X ≥ n} < ∞. Hint: estimate both quantities in question by

sums of terms of the form P{X ∈ [k, k + 1)}.
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2. Due by October 8, 3:30pm

1. Prove that if r.v.’s X and Y are independent and E|X| < ∞,E|Y | < ∞,
then EXY = EXEY , i.e., cov(X,Y ) = 0.

2. Give an example of r.v.’s X and Y such that cov(X,Y ) = 0, but X and
Y are not independent.

3. Let 0 < α < β. Then for any r.v. X, E|X|β <∞ implies E|X|α <∞.
4. Let 0 < α < β. Give an example of a r.v. X such that E|X|β = ∞ and

E|X|α <∞.
5. Prove that if a sequence (Yn)n∈N of r.v.’s converges in probability iff it is

Cauchy in probability, i.e.,

lim
n→∞
m→∞

P {|Yn − Ym| > ε} = 0.

6. Suppose a family of r.v.’s (Yn)n∈N satisfies

lim
n→∞
m→∞

P

{
max
m≤k≤n

|Yk − Ym| > ε

}
= 0.

Prove that Yn converges a.s. as n→∞.
7. Let (Xn)n∈N be a sequence of r.v.’s. Let Fn = σ(X1, . . . , Xn), n ∈ N. Let
F∞ = σ(X1, X2, . . .). Prove that for every set A ∈ F∞ and every ε > 0
there is n ∈ N and a set B ∈ Fn such that P(A4B) < ε.

8. Prove that if X1, X2, X3, X4 are mutually independent r.v.’s and

Y = f(X1, X2), Z = g(X3, X4),

for some measurable functions f, g, then Y and Z are independent.
9. Prove the second Borel–Cantelli lemma: If events (An)n∈N are indepen-

dent, then
∑

n∈N P(An) =∞ implies P{An i.o.} = 1.
10. Let (Xn)n≥2 be a sequence of independent r.v.’s with the following prop-

erties:

P{Xn = 0} = 1− 1
n lnn

, P{Xn = ±n} =
1

2n lnn
.

Prove that (X2 + . . .+Xn)/n converges in probability and does not con-
verge a.s. (as n → ∞) Hint: for the latter you may use the second
Borel–Cantelli lemma, to prove that P{|Xn| ≥ n i.o.} = 1.

11. Let Ω = [0, 1],F = B([0, 1]),P = Leb. For each ω ∈ Ω define ak(ω) ∈
{0, 1} via

ω =
∞∑
k=1

ak(ω)2−k,

where ak = 0 for large k if ω = j/2n for some j, n. Prove that (ak) is an
i.i.d. sequence with P{ak = 1} = P{ak = 0} = 1/2.

12. Prove that if (ak) is an i.i.d. sequence with P{ak = 1} = P{ak = 0} =
1/2, then U =

∑∞
k=1 ak2

−k is uniformly distributed on [0, 1].
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13. Let F be a distribution function. Define F−1(y) = inf{x : F (x) > y},
y ∈ [0, 1]. Let X = F−1(U) where U is uniformly distributed on [0, 1].
Prove that P{X ≤ x} = F (x) for all x. Remark: F−1 is often called
the quantile transform since it maps quantiles of the two distributions
involved onto each other.

14. For any sequence of distribution functions (Fn)n∈N, use the last 3 prob-
lems to construct a family of independent r.v.’s (Xn)n∈N on ([0, 1],B, Leb)
such that Xn has distribution function Fn.
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3. Due by October 22, 3:30pm

All measures are assumed to be Borel.
1. Prove that xn → x iff δxn ⇒ δx, where δx denotes the Dirac probability

measure concentrated at x, and ⇒ denotes weak convergence.
2. Prove that if

∫
R f dµ =

∫
R f dν for all f ∈ Cb, then measures µ and ν

coincide.
3. Explain why convergence in distribution does not, in general, imply con-

vergence in probability.
4. Prove that if c is a nonrandom number and Xn

d→ c, then Xn
P→ c.

5. Prove that µn ⇒ µ iff limn→∞ Fµn(x) = Fµ(x) for all points x where Fµ
is continuous. Here we use the notation Fµ(x) = µ(−∞, x].

6. Prove that µn ⇒ µ iff lim supn→∞ µn(A) ≤ µ(A) for all closed sets A ⊂ R.
7. Prove that µn ⇒ µ iff lim infn→∞ µn(A) ≥ µ(A) for all open sets A ⊂ R.
8. The following inequality was explained in class: there is K > 0 such that

for any probability measure µ on R and any a > 0,

µ((−a−1, a−1)c) ≤ K

a

∫ a

0
(1− Reφ(t)) dt,

where φ = φµ is the characteristic function of µ. Use this inequality to
prove that if (µn)n∈N is a sequence of probability measures such that their
characteristic functions φµn converge to some function φ pointwise, and
φ is continuous at 0, then (µn) is a tight family.

9. Suppose that a sequence of probability measures µn and a probability
measure ν satisfy the following condition: for every sequence n′ → ∞,
there is a subsequence (n′′) of (n′) such that µn′′ ⇒ ν. Prove that µn ⇒ ν.

10. Prove that if a ∈ R and σ > 0, then

p(x) =
1√
2πσ

e−
(x−a)2

2σ2 , x ∈ R,

is a probability density, i.e.,
∫

R p(x)dx = 1. (This is the density of the
Gaussian distribution N (a, σ2).)

11. Use integration by parts to prove that if X has standard Gaussian distri-
bution (i.e., N (0, 1)), then

EXn =

{
0, n = 2k − 1, k ∈ N,
(2k − 1)!! = (2k − 1) · (2k − 3) · . . . · 3 · 1, n = 2k, k ∈ N.

12. Use the previous problem to compute the characteristic function ofN (a, σ2)
(start with N (0, 1)).

13. Prove that if X and Y are independent r.v.’s and their distributions have
densities pX and, respectively, pY with respect to Lebesgue measure, then
the distribution of X+Y also has a density pX+Y given by the convolution
formula

pX+Y (z) =
∫

R
pX(x)pY (z − x)dx, z ∈ R.
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14. Use the formula from the previous problem to prove that the sum of
two independent r.v.’s with distributions N (a1, σ

2
1) and N (a2, σ

2
2) has

distribution N (a1 + a2, σ
2
1 + σ2

2).
15. Using a discrete analogue of the above convolution formula, prove that the

sum of two independent r.v.’s with Poisson distribution with parameters
λ1 and λ2 respectively, is also a Poisson r.v., with parameter λ1 + λ2.

16. Prove the results from problems 14 and 15 using characteristic functions.
17. Prove the (weak) LLN for i.i.d. r.v.’s with finite first moment using char-

acteristic functions.
18. Prove the following Poisson limit theorem using characteristic functions:

Let λ ∈ R and (Xnk, n ∈ N, 1 ≤ k ≤ n) be a (“triangular”) array of r.v.’s
such that for each n, Xn1, . . . , Xnn are i.i.d. Bernoulli with parameter
pn ∈ (0, 1) (i.e., Xn1 takes values 1 and 0 with probabilities pn and
1 − pn) such that limn→∞ npn = λ. Then Xn1 + . . . + Xnn converges in
distribution to a Poisson r.v. with parameter λ.

19. [This problem is not for grading. This is more of a self-improvement
mini-project]. Let P(R,B(R)) be the space of all Borel probability dis-
tributions on (R,B(R)). For any µ, ν ∈ P(R,B(R)), we define P(µ, ν) as
the set of probability measures on (R2,B(R2)) with marginals µ and ν.
P(µ, ν) 6= ∅ since µ× ν ∈ P(µ, ν). We define

d(µ, ν) = inf
P∈P(µ,ν)

∫
R2

(|x− y| ∧ 1)P (dx, dy).

Prove that d is a metric on P(R,B(R)). Prove that limn→∞ d(µn, ν) = 0
iff µn ⇒ ν.
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4. Due by November 5, 3:30PM

1. Prove that the Lindeberg condition holds for any i.i.d. sequence of r.v.’s
with finite second moment.

2. A sequence (Xn)n∈N of independent r.v.’s satisfies the Lyapunov condition
if for some δ > 0

lim
n→∞

1
D2+δ
n

n∑
j=1

E|Xj −mj |2+δ = 0,

where mj = EXj and D2
n =

∑n
j=1 E(Xj−mj)2. Prove that the Lindeberg

condition follows from the Lyapunov condition.
3. Give an example of a sequence of centered independent r.v.’s with finite

second moment such that both the Lindeberg condition and CLT fail.
4. Prove that the Poisson distribution with parameter λ > 0 is infinitely

divisible.
5. Suppose X has Poisson distribution with parameter λ > 0, and (Yn)n∈N

is an i.i.d. family of r.v.’s independent of X. Prove that

Z =
X∑
k=1

Yk

is a r.v. Prove that the distribution of Z is infinitely divisible. (The
previous problem is a specific case where Yn ≡ 1.)

6. Prove that Gaussian distributions are infinitely divisible.
7. Suppose r.v.’s X1, . . . , Xn are independent and each one has an infin-

itely divisible distribution. Is the distribution of X1 + . . .+Xn infinitely
divisible?

8. Prove that the Cauchy distribution with density p(x) = 1
π

1
1+x2 , x ∈ R is

stable.
9. Suppose r.v.’s X1, . . . , Xn are independent and each one has a stable

distribution. Is the distribution of X1 + . . .+Xn stable?
10. Prove that if a distribution is stable it is infinitely divisible.
11. Give an example of an infinitely divisible distribution that is not stable.
12. Let (Xn)n∈N be i.i.d. r.v.’s with uniform distribution on [−1, 1]. Let

Yn = 1/Xn for all n. Find α ∈ (0,∞) such that∑n
j=1 Yj

nα

converges in distribution to a nonconstant r.v.
13. For random vectors there is a theory of characteristic functions parallel

to that for random variables. Let X = (X1, . . . , Xd) be a random vector
in Rd, i.e., each of X1, . . . , Xd is a r.v. The characteristic function of X
is defined then as

φX(t) = φX(t1, . . . , td) = Eei〈t,X〉 = Eei(t1X1+...+tdXd), t = (t1, . . . , td) ∈ Rd.
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(The angular brackets stand for the standard inner product in Rd). Just
as in the one-dimensional case, it turns out that for any d ∈ N, weak
convergence of distributions in Rd is equivalent to convergence of their
characteristic functions. Use this to prove the following Cramér-Wold the-
orem: a sequence of random d-dimensional vectors (X(n))n∈N converges
in distribution (as n→∞) to a random vector Y iff for any nonrandom
vector t ∈ Rd, 〈t,X(n)〉 converges in distribution to 〈t, Y 〉.

14. [Not for grading] Use Problem 13 to state a multi-dimensional version of
CLT.
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5. Due by November 26, 3:30 PM

1. Prove Jensen’s inequality: if f : R → R is a convex function and X is a
random variable such that E|X| <∞, then either Ef(X) =∞ or

f(EX) ≤ Ef(X) <∞.
To do this, use the following property of convex functions: for every
x0 ∈ R there is a(x0) such that for all x ∈ R, f(x) ≥ f(x0)+a(x0)(x−x0).

2. Prove Jensen’s inequality for conditional expectations: if f : R → R is
a convex function and X is a random variable such that E|X| < ∞ and
E|f(X)| <∞, then for any σ-algebra G ⊂ F ,

f(E[X|G]) ≤ E[f(X)|G].

3. Prove that if EX2 <∞, then E[(E(X|G))2] <∞ for any σ-algebra G. (In
class we interpreted conditional expectations as orthogonal projectors in
L2, but we did not check the statement of this problem). One way to do
this is to use Jensen’s inequality.

4. Let Xn
Lp→ X for some p ≥ 1, i.e., E|Xn −X|p → 0. Show that

E[Xn|G] L
p

→ E[X|G].
5. Suppose X,Y are i.i.d. r.v.’s such that E|X| <∞. Prove that

E(X|X + Y ) = E(Y |X + Y ) =
X + Y

2
.

6. Prove that a r.v. X and a sigma-algebra G are independent (i.e., that for
every B ∈ G, r.v.’s X and 1B are independent) iff E(g(X)|G) = Eg(X)
for every bounded measurable function g.

7. Let G be a sigma-algebra, and X,Y be r.v.’s such that X is G-measurable
and Y is independent of G. Let F be a bounded function measurable with
respect to B(R2) and let a(x) = EF (x, Y ). Prove that

E(F (X,Y )|G) = a(X).

(Hint: start with functions F (x, y) = 1A(x)1B(y))
8. Let the random point (X,Y ) be uniformly distributed in 0 < x < 1,

0 < y < x. Find the distribution of Y conditioned on X = x, for every
x ∈ (0, 1). Find the distribution of E[Y |X].

9. Recall that we defined a Markov process with initial distribution ρ and
transition probability P (·, ·) via

P{X0 ∈ A0, . . . , Xm ∈ Am}

=
∫
A0

ρ(dx0)
∫
A1

P (x0, dx1) . . .
∫
Am−1

P (xm−2, dxm−1)
∫
Am

P (xm−1, dxm).

Prove that this definition is equivalent to

Ef(X0, . . . , Xm)

=
∫

R
ρ(dx0)

∫
R
P (x0, dx1) . . .

∫
R
P (xm−1, dxm)f(x0, . . . , xm),
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for any m and any bounded Borel function f : Rm+1 → R.
10. Prove that if X = (Xn)n≥0 is a Markov process with transition kernel

P (·, ·), then for any m ≥ 0, n ∈ N, and any sets A1, . . . , An,

P(Xm+1 ∈ A1, . . . , Xm+n ∈ An|X0, . . . , Xm)
a.s.= P(Xm+1 ∈ A1, . . . , Xm+n ∈ An|Xm)

a.s.=
∫
A1

P (Xm, dx1) . . .
∫
An−1

P (xn−2, dxn−1)
∫
An

P (xn−1, dxn).

In particular,

P(Xm+n ∈ A|X0, . . . , Xm) a.s.= P(Xm+n ∈ A|Xm)

a.s.=
∫

R
P (Xm, dx1) . . .

∫
R
P (xn−2, dxn−1)P (xn−1, A).

for any Borel set A.
11. Use Problem 7 to prove the following: Suppose f : R2 → R is a Borel

function. Let X0 be a r.v. with distribution ρ. Let (Wn)n∈N be an i.i.d.
sequence of r.v.’s. Define inductively Xn = f(Xn−1,Wn) for n ∈ N. Prove
that Xn is a Markov process with initial distribution ρ and transition
probability P (·, ·) defined by

P (x,A) = P{f(x,W1) ∈ A}.
12. Prove that if (Xn) is an i.i.d. sequence, then

Sn =

{
0, n = 0,
X1 + . . .+Xn, n ∈ N

is a Markov process. Find a transition kernel for this process. (Hint: you
may use Problem 11).
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6. Practice problems on Markov chains. Not for grading.
Some of these problems will be given on the in-class final

exam

1. Let τ be a stopping time w.r.t. a filtration (Fn)n≥0. Prove that

Fτ = {A ∈ F : for all n ≥ 0, A ∩ {τ ≤ n} ∈ Fn}

is a σ-algebra. Prove that τ is Fτ -measurable. Prove that if (Xn) is a
process adapted to (Fn) (i.e. Xn is Fn-measurable for all n), then Xτ is
a Fτ -measurable r.v.

2. In our proof of the fact that all states of an irreducible (and countable
state space) Markov chain have the same type, we denoted p = Pi{τj <
τi}, where τi = min{n ≥ 1 : Xn = i} stands for the hitting time for state
i, and from the inequality

(6.1) Eiτj ≤ Eiτi + (1− p)Eiτj
we derived that

(6.2) Eiτj ≤
Eiτi
p

<∞.

But, in fact, there is no contradiction in having Eiτj = ∞ in (6.1). Fix
this by considering truncated times τNj = τj ∧ N , proving estimates on
τNj analogous to (6.1),(6.2), and letting N →∞.

3. In class, we proved that a state i of a Markov chain is transient iff
∞∑
n=1

pNii <∞.

Prove that if the Markov chain is irreducible and i is transient, then for
any other state j

∞∑
n=1

pNji <∞.

4. Consider the following simple random walk on Z. For a number p ∈ (0, 1),
set

pi,i+1 = p, pi,i−1 = 1− p, i ∈ Z,
and set pij = 0 if |i − j| 6= 1. Prove that if p = 1/2, then this Markov
chain is null-recurrent. Prove that if p 6= 1/2, then it is transient.

5. Consider simple random walk in Zd. At each step it jumps to one of the
2d nearest neighbors of the current state, i.e.,

pij =

{
1
2d , |i− j| = 1,
0, otherwise.

Prove that for d = 2 this Markov chain is recurrent.
6. Prove that simple random walk in Zd is transient for d = 3.
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7. The simple random walk on a graph is a Markov chain on the vertices
of the graph. At each step the MC chooses one of the neighbors (ver-
tices connected to the current one by an edge) uniformly among all the
neighbors, and jumps to that vertex.

Let T be an infinite tree such that all vertices have degree 3 (in other
words, every two vertices in this graph are connected by a path consisting
of edges of the graph, there are no loops, and every vertex has exactly 3
neighbors). Prove that the simple random walk on T is transient.

8. Suppose X is a recurrent irreducible Markov chain. Recall that τh =
min{n ≥ 1 : Xn = h}. Prove that the average time spent in state i
during one excursion from a state h

ρi = Eh

∞∑
k=1

1{Xk=i, k<τh}

is finite.
9. Consider the following Markov chain on N ∪ {0}:

pij =


1/3, j = i+ 1,
2/3, j = i− 1, i > 0,
2/3, i, j = 0,
0, otherwise.

Is it recurrent? transient? positive-recurrent? Find limn→∞ p
(n)
ij for all

i, j.
10. Suppose the number of states in the Markov chain is finite. Show that

there are positive recurrent states then. Derive that if there is only one
communication class there is a unique invariant distribution.

11. Suppose an irreducible Markov chain on N defined by transition proba-
bilities pij admits a stationary distribution π = (π1, π2, . . .), i.e. πi ≥ 0
for all i,

∑
πi = 1 and

πi =
∑

πjpji.

Prove that the chain is positive recurrent.
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7. Practice problems on martingales. Not for grading. Some
of these problems will be given on the in-class final exam

1. Prove that if τ and σ are stopping times w.r.t. a filtration (Fn), then
τ ∧ σ and τ ∨ σ.

2. Prove that if τ and σ are stopping times w.r.t. a filtration (Fn) and τ ≤ σ,
then Fτ ⊂ Fσ.

3. Let (Xk)k∈N be i.i.d. N(0, 1) r.v.’s. Let Sn = X1 + . . .+Xn. Find α ∈ R
such that Zn = eSn+αn is a martingale w.r.t. its natural filtration.

4. Suppose (Mn) is a martingale and τ is a stopping time w.r.t. a filtration
(Fn). Let M τ

n = Mτ∧n for all n. Prove that (M τ
n ,Fn) is a martingale.

5. Suppose (Mn,Fn) is a square-integrable martingale (i.e., EM2
n < ∞ for

all n). Prove that this process has orthogonal increments:

E(Mn2 −Mn1)(Mn4 −Mn3) = 0

for all n1, n2, n3, n4 ∈ N satisfying n1 ≤ n2 ≤ n3 ≤ n4.
6. Suppose (Yn,Fn) is a martingale and (Vn,Fn−1) is a bounded predictable

sequence. We define the process ((V · Y )n,Fn) via

(V · Y )n = V0Y0 +
n∑
i=1

Vi∆Yi, n ≥ 0,

where ∆Yi = Yi − Yi−1. Prove that ((V · Y )n,Fn) is a martingale.
7. Let Nn be the size of a population of bacteria at time n. At each time

each bacterium produces a number of offspring and dies. The number of
offspring is independent for each bacterium and is distributed according
to the Poisson law with rate parameter λ = 2. Assuming that N1 = a > 0,
find the probability that the population will eventually die, i.e., find

P{there is n such that Nn = 0}.
Hint: Express the answer in terms of a and a number c > 0 such that
exp(−cNn) is a martingale (prove that such a number exists).

8. Let (Ω,F ,P) be [0, 1) with Borel σ-algebra and Lebesgue measure. Let
f ∈ L1(Ω,F ,P). Let

fn(x) = 2n
∫ k2−n

(k−1)2−n
f(y)dy, for x ∈ [(k − 1)2−n, k2−n), k ∈ N.

Prove that fn(x)→ f(x) for Lebesgue-almost all x ∈ [0, 1). Hint: Prove
that (fn,Fn) is a martingale where Fn is the σ-algebra generated by
intervals [(k − 1)2−n, k2−n).


