PROBLEMS FOR PROBABILITY: LIMIT THEOREMS I

PROF. YURI BAKHTIN

Instructions. You are allowed to work on solutions in groups, but you
are required to write up solutions on your own. Please give complete solu-
tions, all claims need to be justified. Late homework will not be accepted.

Please let me know if you find any misprints or mistakes.

1. DUE BY SEPTEMBER 24, 3:30PM (INITIALLY A DIFFERENT DATE WAS
POSTED HERE BY MISTAKE)

1. A family F of subsets of a set €2 is called a o-algebra if
(a) 0 € F,
(b) Aec F = A°c F,
(c) Ay e Fforalln e N= (), .yAn € F.
Prove that if one replaces (¢) with
(c)Ap € Fforalln e N = |J,cyAn € F,
one will obtain an equivalent definition.
2. Prove that for any two sets A, B € F,
P(AUuB)=P(A)+P(B)—P(ANB).
More generally, find and prove a similar expression (inclusion-exclusion
formula) for P(U; 4;).
3. Let I be a family of o-algebras on a set Q. Prove that ()g; G is also a
o-algebra. Show that (Jg.; G is not necessarily a o-algebra.
4. Let P be a finitely additive function on an algebra A of subsets of 2, with

values in [0, 400). Prove that the following statements are equivalent:
(a) If Ay, Ag,... € A are disjoint and |J A,, € A, then

P(lJ 4n) =D P(4n).

neN neN
(b) If Ay, As,...€ A, A, C Apyq for all n, and J,, oy An € A, then

P(LJ 4n) = lim P(An).

neN
(c) If Ay, Ag,...€ A, Ay D Apyy for all n, and (), An € A, then

P([) An) = lim P(An).
neN

(d) If Ay, Ag,...€ A, Ay D Ay for all n, and (), oy An = 0, then
lim P(A,) =0.

n—oo
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. Let (X,,)nen be a bounded sequence of r.v.’s (i.e., there is a constant

C > 0 such that | X, (w)| < C for all n and w). Prove that liminf, . X,
isar.v.

Give an example of a probability space (€2, F,P), a sequence of r.v.’s
(Xn)nen and a r.v. X, such that {X,, A X} # 0 but X,, — X a.s.

Give an example of a probability space (€2, F,P), a sequence of r.v.’s

(Xn)nen such that X,, = 0 but P{w : X,(w) /4 0} = 1.
Prove that if X, P x , then there is a deterministic sequence (ng)gen,

limy, .o g, = oo such that X,,, X,
Prove the first part of the Borel-Cantelli Lemma: Denoting

{4,, i.0.} =limsup A,, = ﬂ U Ag,
neNk>n

prove that ) P(An) < oo implies P{A4, i.0.} = 0. (“i.o.” stands for
“Infinitely often”).
Let (25,)nen be a number sequence. Let us define A,, = (—o0, ). Prove
that and A = limsup A,, (the latter is defined in the previous problem)
equals either (—oo, z) or (—oo, z], where x = lim sup x,,.
Find an example of (Q, F,P) and r.v.’s X,, such that X,, — 0 a.s., but
EX, £ 0.
The function f(z) = Lg(z) is Lebesgue-integrable and not Riemann-
integrable on [0, 1]. Why?
Let X be a nonnegative r.v. Prove that EX < oo iff (if and only if)
> nen P{X > n} < oco. Hint: estimate both quantities in question by
sums of terms of the form P{X € [k, k+ 1)}.
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2. DUE BY OCTOBER 8, 3:30PM

. Prove that if r.v.’s X and Y are independent and E|X| < oo, E|Y| < oo,

then EXY = EXEY, i.e., cov(X,Y) =0.

. Give an example of r.v.’s X and Y such that cov(X,Y) = 0, but X and

Y are not independent.

Let 0 < o < 3. Then for any r.v. X, E|X|? < oo implies E|X|* < oo.
Let 0 < a < . Give an example of a r.v. X such that E[X|® = co and
E|X|* < 0.

. Prove that if a sequence (Y;,)nen of r.v.’s converges in probability iff it is

Cauchy in probability, i.e.,
nh_}IrC}O P{IY, —Yn,| >¢c}=0.

m—00

Suppose a family of r.v.’s (Y},),en satisfies

él__){riip {mrgg)g(n Y — Y| > 5} =0.

Prove that Y,, converges a.s. as n — oc.

Let (Xp)nen be a sequence of r.v.’s. Let F,, = o(X1,...,X,), n € N. Let
Feo = 0(X1,Xs,...). Prove that for every set A € Fo, and every ¢ > 0
there is n € N and a set B € F,, such that P(AAB) < e.

Prove that if X1, Xo, X3, X4 are mutually independent r.v.’s and

Y:f(X17X2)7 Z:g(X37X4)7

for some measurable functions f, g, then Y and Z are independent.
Prove the second Borel-Cantelli lemma: If events (A, )nen are indepen-
dent, then )y P(A,) = oo implies P{A, i.0.} = 1.

Let (Xy)n>2 be a sequence of independent r.v.’s with the following prop-
erties:

1 1

P{X,=0}=1- . P{X,=4n}=

nlnn o2nlnn’

Prove that (X2 +...+ X,,)/n converges in probability and does not con-
verge a.s. (as n — oo) Hint: for the latter you may use the second
Borel-Cantelli lemma, to prove that P{|X,,| > n i.0.} = 1.

Let @ = [0,1], F = B([0,1]),P = Leb. For each w € Q define ax(w) €
{0,1} via

o0
w= Z ap(w)27F,
k=1

where a = 0 for large k if w = j/2" for some j,n. Prove that (aj) is an
ii.d. sequence with P{ay =1} = P{ay =0} =1/2.

Prove that if (ay) is an i.i.d. sequence with P{ay = 1} = P{ay = 0} =
1/2, then U = "2 | ;27" is uniformly distributed on [0, 1].
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Let F be a distribution function. Define F~!(y) = inf{z : F(x) > y},
y € [0,1]. Let X = F~Y(U) where U is uniformly distributed on [0, 1].
Prove that P{X < 2} = F(z) for all z. Remark: F~! is often called
the quantile transform since it maps quantiles of the two distributions
involved onto each other.

For any sequence of distribution functions (F,),en, use the last 3 prob-
lems to construct a family of independent r.v.’s (X )nen on ([0, 1], B, Leb)
such that X,, has distribution function F,.
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3. DUE BY OCTOBER 22, 3:30PM

All measures are assumed to be Borel.

. Prove that x,, — z iff §,, = 0., where &, denotes the Dirac probability

measure concentrated at x, and = denotes weak convergence.

. Prove that if [, fdu = [; fdv for all f € Cj, then measures p and v

coincide.

. Explain why convergence in distribution does not, in general, imply con-

vergence in probability.

. Prove that if ¢ is a nonrandom number and X, 4, ¢, then X, LA c.
. Prove that p, = p iff lim, . F),, () = F,(z) for all points « where F),

is continuous. Here we use the notation F),(z) = pu(—o0, z].

. Prove that p, = piff limsup,,_, o pn(A) < u(A) for all closed sets A C R.
. Prove that p, = p iff liminf, o pn(A) > p(A) for all open sets A C R.
. The following inequality was explained in class: there is K > 0 such that

for any probability measure g on R and any a > 0,
K a
pl(—a~ o)) < o (1= Res(r) d,
0

where ¢ = ¢, is the characteristic function of u. Use this inequality to
prove that if (u,,)nen is a sequence of probability measures such that their
characteristic functions ¢, converge to some function ¢ pointwise, and
¢ is continuous at 0, then (u,) is a tight family.

. Suppose that a sequence of probability measures u, and a probability

measure v satisfy the following condition: for every sequence n’ — oo,
there is a subsequence (n”) of (n’) such that p,» = v. Prove that u, = v.
Prove that if a € R and ¢ > 0, then

1 _(z—a)?
e 22 . x€eR,

xr) =
ple) 2ro
is a probability density, i.e., [pp(z)der = 1. (This is the density of the
Gaussian distribution A'(a, c?).)
Use integration by parts to prove that if X has standard Gaussian distri-
bution (i.e., N'(0,1)), then

EX”:{O’ n=2%—1, k€N,

(2 —1)'=(2k—-1)-(2k—3)-...-3-1, n=2k keN.

Use the previous problem to compute the characteristic function of N'(a, o2)
(start with N(0,1)).

Prove that if X and Y are independent r.v.’s and their distributions have
densities px and, respectively, py with respect to Lebesgue measure, then
the distribution of X +Y also has a density pxty given by the convolution
formula

px+y(z) = /Rpx(a:)py(z —z)dr, z€R.
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Use the formula from the previous problem to prove that the sum of
two independent r.v.’s with distributions N (a1,0?) and N(ag,03) has
distribution N'(ay + az, 0% + 03).

Using a discrete analogue of the above convolution formula, prove that the
sum of two independent r.v.’s with Poisson distribution with parameters
A1 and Ao respectively, is also a Poisson r.v., with parameter A\; 4+ As.
Prove the results from problems 14 and 15 using characteristic functions.
Prove the (weak) LLN for i.i.d. r.v.’s with finite first moment using char-
acteristic functions.

Prove the following Poisson limit theorem using characteristic functions:
Let A € R and (X, n € N, 1 <k <n) be a (“triangular”) array of r.v.’s
such that for each n, X,1,..., X, are i.i.d. Bernoulli with parameter
pn € (0,1) (i.e., X,1 takes values 1 and 0 with probabilities p, and
1 — py) such that lim,, oo np, = A. Then X, + ...+ X,,, converges in
distribution to a Poisson r.v. with parameter A.

[This problem is not for grading. This is more of a self-improvement
mini-project]. Let P(R, B(R)) be the space of all Borel probability dis-
tributions on (R, B(R)). For any u,v € P(R, B(R)), we define P(u,v) as
the set of probability measures on (R?, B(R?)) with marginals y and v.
P(p,v) # 0 since u x v € P(u,v). We define

d = inf —y| A1) P(dz, dy).
() = pint [ (o =9l AP, dy)

Prove that d is a metric on P(R, B(R)). Prove that lim, . d(pn,v) =0
iff pp, = v.
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4. DUE BY NOVEMBER 5, 3:30PM

. Prove that the Lindeberg condition holds for any i.i.d. sequence of r.v.’s

with finite second moment.

. A sequence (X, )nen of independent r.v.’s satisfies the Lyapunov condition

if for some § > 0

n
> EIX; —myPT =0,
j=1

) 1
0 5T
where m; = EX; and D2 = > -1 E(X; —m;)?. Prove that the Lindeberg
condition follows from the Lyapunov condition.

Give an example of a sequence of centered independent r.v.’s with finite
second moment such that both the Lindeberg condition and CLT fail.

Prove that the Poisson distribution with parameter A > 0 is infinitely
divisible.

. Suppose X has Poisson distribution with parameter A > 0, and (Y},)nen

is an i.i.d. family of r.v.’s independent of X. Prove that

X
Z=> Y
k=1

is a r.v. Prove that the distribution of Z is infinitely divisible. (The
previous problem is a specific case where Y,, = 1.)

Prove that Gaussian distributions are infinitely divisible.

Suppose r.v.’s Xq,..., X, are independent and each one has an infin-
itely divisible distribution. Is the distribution of X7 + ...+ X,, infinitely

divisible?
1

Prove that the Cauchy distribution with density p(z) = %1 7 TERIs
stable.
Suppose r.v.’s Xq,...,X, are independent and each one has a stable

distribution. Is the distribution of X; + ... + X,, stable?

Prove that if a distribution is stable it is infinitely divisible.

Give an example of an infinitely divisible distribution that is not stable.
Let (X,)nen be idd. r.v.’s with uniform distribution on [—1,1]. Let
Y, = 1/X, for all n. Find « € (0,00) such that

2= Yj
nOé

converges in distribution to a nonconstant r.v.

For random vectors there is a theory of characteristic functions parallel
to that for random variables. Let X = (X1,..., X4) be a random vector
in R%, i.e., each of X1,..., X, is a r.v. The characteristic function of X
is defined then as

ox(t) = px(tr,. .. tg) = Ee"WX) = EellnXitttaXa) - — (1) tg) € RY.
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(The angular brackets stand for the standard inner product in R?). Just
as in the one-dimensional case, it turns out that for any d € N, weak
convergence of distributions in R? is equivalent to convergence of their
characteristic functions. Use this to prove the following Cramér-Wold the-
orem: a sequence of random d-dimensional vectors (X (”))neN converges
in distribution (as n — o) to a random vector Y iff for any nonrandom
vector t € R, (t, X(™)) converges in distribution to (t,Y).

[Not for grading] Use Problem 13 to state a multi-dimensional version of
CLT.
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5. DUE BY NOVEMBER 26, 3:30 PM

1. Prove Jensen’s inequality: if f : R — R is a convex function and X is a
random variable such that E|X| < oo, then either Ef(X) = oo or

J(EX) < Ef(X) < oo

To do this, use the following property of convex functions: for every
xo € R there is a(x) such that for all z € R, f(z) > f(zo)+a(xo)(x—x0).

2. Prove Jensen’s inequality for conditional expectations: if f : R — R is
a convex function and X is a random variable such that E|X| < oo and
E|f(X)| < oo, then for any o-algebra G C F,

f(E[X|G]) < E[f(X)|4].

3. Prove that if EX? < oo, then E[(E(X|G))?] < oo for any o-algebra G. (In
class we interpreted conditional expectations as orthogonal projectors in
L?, but we did not check the statement of this problem). One way to do
this is to use Jensen’s inequality.

4. Let X, 2 X for some p > 1, i.e., E|X, — X|P — 0. Show that
E[X.|G] £ E[X]|g].

5. Suppose X,Y are i.i.d. r.v.’s such that E|X| < co. Prove that

X+Y
5

6. Prove that a r.v. X and a sigma-algebra G are independent (i.e., that for
every B € G, rv.’s X and 1p are independent) iff E(¢(X)|G) = Eg(X)
for every bounded measurable function g.

7. Let G be a sigma-algebra, and X,Y be r.v.’s such that X is G-measurable
and Y is independent of G. Let F' be a bounded function measurable with
respect to B(R?) and let a(x) = EF(z,Y). Prove that

E(F(X,Y)|G) = a(X).

(Hint: start with functions F(z,y) = 14(z)1p(y))

8. Let the random point (X,Y) be uniformly distributed in 0 < =z < 1,
0 < y < z. Find the distribution of Y conditioned on X = =z, for every
x € (0,1). Find the distribution of E[Y|X].

9. Recall that we defined a Markov process with initial distribution p and
transition probability P(-,-) via

P{Xo € A(),... , Xm € Am}
= / p(d:):o)/ P(xg,dz) .. / P(zp,—2, dxm_l)/ P(xm—1,dzy).
AO Al Am—l Am

Prove that this definition is equivalent to

Ef(Xo,...,Xm)

:/Rp(dxo)/RP(xo,dxl).../RP(xm_l,da:m)f(xo,..-,xm)a

EX|X+Y)=EY|X+Y)=
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for any m and any bounded Borel function f:R™*! — R.
Prove that if X = (X,)n>0 is a Markov process with transition kernel
P(-,-), then for any m > 0,n € N, and any sets Aq,...,A,,

P(Xerl € Aq,... , Xm+n € An|X0, . ,Xm)
CP(Xni1 € A1, Xonan € Al Xon)

“':S'/ P(Xm,d;m).../ P(ﬂcn2,d$n1)/ P(zp-1,dzy).
” A, An

In particular,

P(Xpmin € Al X0, ..., Xm) C P(Xpin € Al X0)

af/P(Xm,dxl).../P<wn_2,dwn—1)P($n—hA)-
R R

for any Borel set A.
Use Problem 7 to prove the following: Suppose f : R?> — R is a Borel
function. Let Xy be a r.v. with distribution p. Let (W),)nen be an ii.d.
sequence of r.v.’s. Define inductively X,, = f(X,—1, W,,) for n € N. Prove
that X, is a Markov process with initial distribution p and transition
probability P(-,-) defined by

P(z, A) = P{f(z,W1) € A}.

Prove that if (X,) is an i.i.d. sequence, then
0, n =20,
Sn =
Xi1+...+X,, neN

is a Markov process. Find a transition kernel for this process. (Hint: you
may use Problem 11).
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6. PRACTICE PROBLEMS ON MARKOV CHAINS. NOT FOR GRADING.
SOME OF THESE PROBLEMS WILL BE GIVEN ON THE IN-CLASS FINAL
EXAM

1. Let 7 be a stopping time w.r.t. a filtration (F,),>0. Prove that
Fr={AeF: foralln>0,An{r <n} e F,}

is a o-algebra. Prove that 7 is Fr-measurable. Prove that if (X,,) is a
process adapted to (F,) (i.e. X,, is Fp-measurable for all n), then X is
a Fr-measurable r.v.

2. In our proof of the fact that all states of an irreducible (and countable
state space) Markov chain have the same type, we denoted p = P;{7; <
7i}, where 7; = min{n > 1: X,, = i} stands for the hitting time for state
i, and from the inequality

(6.1) Eitj <Eimi + (1 —p)EiT;
we derived that
E.7—.
(6.2) Eitj < — < o
But, in fact, there is no contradiction in having E;7; = oo in (6.1). Fix
this by considering truncated times T]N = 7; A N, proving estimates on

TJN analogous to (6.1),(6.2), and letting N — oo.

3. In class, we proved that a state ¢ of a Markov chain is transient iff

o
N
n=1

Prove that if the Markov chain is irreducible and 4 is transient, then for
any other state j

(o]

N
> _pj <.
n=1

4. Consider the following simple random walk on Z. For a number p € (0, 1),
set
Pii+1 =P, Dii—-1= 1 iy 2 (RS Za
and set p;; = 0 if |[i — j| # 1. Prove that if p = 1/2, then this Markov
chain is null-recurrent. Prove that if p # 1/2, then it is transient.

5. Consider simple random walk in Z¢. At each step it jumps to one of the
2d nearest neighbors of the current state, i.e.,

1 B .
i = 420 i =gl =1,
“ 0, otherwise.

Prove that for d = 2 this Markov chain is recurrent.
6. Prove that simple random walk in Z? is transient for d = 3.
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The simple random walk on a graph is a Markov chain on the vertices
of the graph. At each step the MC chooses one of the neighbors (ver-
tices connected to the current one by an edge) uniformly among all the
neighbors, and jumps to that vertex.

Let T be an infinite tree such that all vertices have degree 3 (in other
words, every two vertices in this graph are connected by a path consisting
of edges of the graph, there are no loops, and every vertex has exactly 3
neighbors). Prove that the simple random walk on T is transient.
Suppose X is a recurrent irreducible Markov chain. Recall that 7, =
min{n > 1 : X,, = h}. Prove that the average time spent in state ¢
during one excursion from a state h

(e.9]
pi = En Y L{x,—i, kery)

k=1
is finite.
Consider the following Markov chain on NU {0}:
1/3, j=i+1,
2/3, j=i—1,i>0,
Pij = .
2/3, 1,j=0,
0, otherwise.

(n)

Is it recurrent? transient? positive-recurrent? Find lim, pi;.l
i,7.

Suppose the number of states in the Markov chain is finite. Show that
there are positive recurrent states then. Derive that if there is only one
communication class there is a unique invariant distribution.

Suppose an irreducible Markov chain on N defined by transition proba-
bilities p;; admits a stationary distribution 7 = (71, m9,...), i.e. m >0

for all 4, Y m =1 and
T = Z?ijji.

Prove that the chain is positive recurrent.

for all
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7. PRACTICE PROBLEMS ON MARTINGALES. NOT FOR GRADING. SOME
OF THESE PROBLEMS WILL BE GIVEN ON THE IN-CLASS FINAL EXAM

. Prove that if 7 and o are stopping times w.r.t. a filtration (F,), then
TAoand TV o.

. Prove that if 7 and o are stopping times w.r.t. a filtration (F,,) and 7 < o,
then F, C F,.

. Let (X%)ken be iid. N(0,1) r.v.s. Let S,, = X; 4+ ...+ X,,. Find o € R
such that Z,, = e9»T%" is a martingale w.r.t. its natural filtration.

. Suppose (M,,) is a martingale and 7 is a stopping time w.r.t. a filtration
(Fn). Let M = M;py, for all n. Prove that (M, F,) is a martingale.

. Suppose (M, F,) is a square-integrable martingale (i.e., EM?2 < oo for
all n). Prove that this process has orthogonal increments:

E(an - Mn1)(Mn4 - Mn3) =0

for all nq,ng, ng, ng € N satisfying nq < no < ng < n4.
. Suppose (Y,, Fy) is a martingale and (V,,, F,,—1) is a bounded predictable
sequence. We define the process ((V -Y),, F,) via

n
(V-Y)p =WYoo+ > ViAY;, n>0,
i=1
where AY; =Y; —Y;_;. Prove that ((V -Y),,F,) is a martingale.

. Let N,, be the size of a population of bacteria at time n. At each time
each bacterium produces a number of offspring and dies. The number of
offspring is independent for each bacterium and is distributed according
to the Poisson law with rate parameter A = 2. Assuming that Ny = a > 0,
find the probability that the population will eventually die, i.e., find

P{there is n such that N,, = 0}.

Hint: Express the answer in terms of @ and a number ¢ > 0 such that
exp(—cNy,) is a martingale (prove that such a number exists).

. Let (Q,F,P) be [0,1) with Borel o-algebra and Lebesgue measure. Let
feLY(Q,F,P). Let

k2"
fn(z) = 2”/ fly)dy, forxze[(k—1)27" k27"), kel
(k—1)2-n

Prove that f,(z) — f(z) for Lebesgue-almost all = € [0,1). Hint: Prove

that (fn,Fn) is a martingale where F,, is the o-algebra generated by
intervals [(k — 1)27"™, k27").



