
PROBABILITY: LIMIT THEOREMS II, SPRING 2015.

HOMEWORK PROBLEMS

PROF. YURI BAKHTIN

Instructions. You are allowed to work on solutions in groups, but you
are required to write up solutions on your own. Please give complete solu-
tions, all claims need to be justified. Late homework will not be accepted.

Please let me know if you find any misprints or mistakes.

1. Due by March 4, 11:00am

1. Let (Xn)n∈N be an i.i.d. positive sequence, and Sn = X1 + . . .+Xn. Let
Nt = sup{n : Sn ≤ t}. Prove that (Nt)t∈R+ is a stochastic process.

2. Let (Wt)t∈R+ be a Wiener process. Find cov(Ws,Wt).

3. Prove that every Borel set B in Rd is regular, i.e., for every probability
Borel measure µ, every ε > 0, there is a compact set K and open set U
such that K ⊂ B ⊂ U and µ(U \K) < ε.

4. Prove that cylinders C(t1, . . . , tn, B), B ∈ B(Rn), t1, . . . , tn ≥ 0, n ∈ N
form an algebra.

5. We defined the cylindrical σ-algebra as the σ-algebra generated by ele-
mentary cylinders. Prove that if we replace “elementary cylinders” by
“cylinders” we obtain an equivalent definition.

6. Let FT = σ{C(t1, . . . , tn, B) : t1, . . . , tn ∈ T} for T ⊂ T.
Prove that

B(RT) =
⋃

countable T⊂T
FT .

7. Use characteristic functions to prove the existence of a Wiener process
(up to continuity of paths).

8. Let (Xt)t∈[0,1] be an (uncountable) family of i.i.d. r.v.’s with nondegen-
erate distribution. Prove that no modification of this process can be
continuous.

9. A multidimensional version of the Kolmogorov–Chentsov theorem. Sup-
pose d ≥ 1, and there is a stochastic field X : [0, 1]d×Ω→ R that satisfies
E|X(s)−X(t)|α ≤ C|s− t|d+β for some α, β, C > 0 and all t, s ∈ [0, 1]d.
Prove that there is a continuous modification of X on [0, 1]d.

10. Prove the following statement. Suppose there is a family of ch.f. (φs,t(·))0≤s<t
such that for all λ ∈ R and all t1 < t2 < t3,

φt1,t2(λ)φt2,t3(λ) = φt1,t3(λ).
1
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Then for every distribution function F , there is a stochastic process
(Xt)t∈R+ with independent increments such thatX0 ∼ F and Eeiλ(Xt−Xs) =
φs,t(λ) for all s < t and λ ∈ R.

11. Show that the Kolmogorov–Chentsov theorem cannot be relaxed: in-
equality E|Xt −Xs| ≤ C|t− s| is not sufficient for existence of a contin-
uous modification. Hint: consider the following process: let τ be a r.v.
with exponential distribution, and define Xt = 1{τ≤t}.

12. Prove that there exists a Poisson process such that:
(a) its realizations are nondecreasing, taking only whole values a.s.
(b) its realizations are continuous on the right a.s.
(c) all the jumps of the realizations are equal to 1 a.s.

13. Give an example of a non-Gaussian 2-dimensional random vector with
Gaussian marginal distributions.

14. Let Y ∼ N (a,C) be a d-dimensional random vector. Let Z = AY where
A is an n × d matrix. Prove that Z is Gaussian and find its mean and
covariance matrix.

15. Prove that an Rd-valued random vector X is Gaussian iff for every vector
b ∈ Rd, the r.v. 〈b,X〉 is Gaussian.

16. Prove that (s, t) 7→ t∧s defined for s, t ≥ 0 is positive semi-definite. Hint:

〈1[0,t],1[0,s]〉L2(R+) = t ∧ s.

17. Prove that (s, t) 7→ e−|t−s| is positive semi-definite.
18. Prove that if X is a Gaussian vector in Rd with parameters (a,C) and

C is non-degenerate, then the distribution of X is absolutely continuous
w.r.t. Lebesgue measure and the density is

pX(x) =
1

det(C)1/2(2π)d/2
e−

1
2
〈C−1(x−a),(x−a)〉.

19. Find a condition on the mean a(t) and covariance function r(s, t) that
guarantees existence of a continuous Gaussian process with these param-
eters.

20. Suppose (X0, X1, . . . , Xn) is a (not necessarily centered) Gaussian vector.
Show that there are constants c0, c1, . . . , cn such that

E(X0|X1, . . . , Xn) = c0 + c1X1 + . . .+ cnXn.

Your proof should be valid even if the covariance matrix of (X1, . . . , Xn)
is degenerate.

21. Consider the standard Ornstein–Uhlenbeck process X (Gaussian process

with mean 0 and covariance function r(s, t) = e−|t−s|).
(a) Prove that X has a continuous modification.
(b) Find E(X4| X1, X2, X3).

22. Prove that for every centered Gaussian process X with independent in-
crements on R+ = [0,∞), there is a nondecreasing nonrandom func-
tion f : R+ → R+ such that X has the same f.d.d.’s as Y defined by
Y (t) = W (f(t)), for a Wiener process W .
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2. Due by March 25, 11:00am

1. Suppose the process Xt is a stationary Gaussian process, and let H be the
Hilbert space generated by (Xt)t∈R, i.e., the space consisting of L2-limits
of linear combinations of values of Xt. Prove that every element in H is
a Gaussian r.v.

2. Find the covariance function of a stationary process such that its spectral
measure is ρ(dx) = dx

1+x2
.

3. Give an example of a weakly stationary stochastic process (Xn)n∈N such
that (X1 + . . .+Xn)/n converges in L2 to a limit that is not a constant.

4. Let (Xt)t∈R be a weakly stationary centered process with covariance func-
tion C and spectral measure ρ. Find the covariance function and spectral
measure for process (Yt)t∈R defined by Yt = X2t.

5. Let (Xn)n∈Z be a weakly stationary process. Prove that for any K ∈ N
and any numbers a−K , a−K+1, . . . , aK−1, aK , the process (Yn)n∈Z defined
by

Yn =
K∑

k=−K
akXn+k

is weakly stationary. Express the spectral measure of Y in terms of the
spectral measure for X.

6. Let stationary process (Xn)n∈Z satisfy E|X0| < ∞. Prove that with
probability 1, limn→∞(Xn/n) = 0.

7. Consider a map θ : Ω → Ω. A set A is called (backward) invariant if
θ−1A = A, forward invariant if θA = A. Prove that the collection of
backward invariant sets forms a σ-algebra. Give an example of Ω and
θ such that the collection of forward invariant sets does not form a σ-
algebra.

8. Consider the transformation θ : ω 7→ {ω + λ} on [0, 1) equipped with
Lebesgue measure. Here {. . .} denotes fractional part of a number. This
map can be interpreted as rotation of the circle parametrized by [0, 1)
with endpoints 0 and 1 identified. Prove that this dynamical system is
ergodic if and only if λ /∈ Q. Hint: take the indicator of an invariant
set and write down the Fourier series for it (w.r.t. e2πinx). What happens
to this expansion under θ?

9. Prove that every Gaussian martingale is a process with independent in-
crements.

10. Let (Xt,Ft)t≥0 be a continuous process. Let a > 0, and let

τ = inf{t : X(t) > a}.

Show that τ is a stopping time w.r.t (Ft+)t≥0, where Ft+ =
⋂
ε>0Ft+ε.

11. Show that if τ1 ≤ τ2 ≤ . . . are stopping times w.r.t. to a filtration (Ft),
then τ = limn→∞ τn is also a stopping time w.r.t. to (Ft).

12. Let Fτ = {A : A ∩ {τ ≤ t} ∈ Ft} for a filtration (Ft) and a stopping
time τ . Show that Fτ is a σ-algebra.
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13. Give an example of the following: a random variable τ ≥ 0 is not a
stopping time, Fτ is not a σ-algebra.

14. Suppose τ is a stopping time w.r.t. (Ft+). Let us define

τn = d2nτe
2n =

∑
k∈N

k
2n1{τ∈( k−1

2n
, k
2n ]}, n ∈ N.

τn =
[2nτ ] + 1

2n
=
∑
k∈N

k

2n
1{τ∈[ k−1

2n
, k
2n )}, n ∈ N.

Prove that for every n ∈ N, τn is a stopping time w.r.t. (Ft)t≥0, Fτn ⊃
Fτ+, and τn ↓ τ .

15. Prove: if (Xt,Ft)t≥0 is a continuous process, then for any stopping time τ ,
Xτ is a r.v. measurable w.r.t. Fτ .

16. Let (Xt,Ft) be a continuous martingale and let τ be a stopping time
w.r.t. Ft. Prove that the “stopped” process (Xτ

t ,Ft)t≥0, where Xτ
t =

Xτ∧t, is also a martingale.
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3. Due by April 15, 11:00am

1. Find the density of the distribution of

τb = inf{t ≥ 0 : W (t) ≥ b},

where b > 0, and W is the standard Wiener process. Hint: use the
reflection principle to find P{τb ≤ x} first.

(Optional: prove that (τb)b≥0 is a process with independent incre-
ments.)

2. Let W 1 and W 2 be two independent Wiener processes w.r.t. a filtration
(Ft)t≥0, and let X be a bounded process adapted to (Ft)t≥0.

For a partition t of time interval [0, T ] (i.e., a sequence of times t =
(t0, t1, . . . , tn) such that 0 = t0 < t1 < t2 < . . . < tn = T ), we define

Q(t) =
∑
j

Atj (W
1
tj+1
−W 1

tj )(W
2
tj+1
−W 2

tj ).

Prove:

lim
max(tj+1−tj)→0

Q(t) = 0 in L2.

3. Let (Ft) be a filtration. Suppose that 0 = A0(t) + A1(t)W (t) for all
t, where (A0,Ft) and (A1,Ft) are C1 processes, and W (t) is a Wiener
process w.r.t. (Ft). Prove that A0 ≡ 0 and A1 ≡ 0.

4. Show that the function

P (s, x, t,Γ) = P (t− s, x,Γ) =

∫
Γ

1√
2π(t− s)

e
− (x−y)2

2(t−s) dy

is a Markov transition probability function for the standard Wiener pro-
cess.

5. Prove the following theorem (Kolmogorov, 1931) using Taylor expansions
of test functions:

Suppose (Px)x∈Rd is a (homogeneous) Markov family on Rd with transi-
tion probabilities P (·, ·, ·). Suppose there are continuous functions aij(x),
bi(x), i, j = 1, . . . , d, such that for every ε > 0, the following relations
hold uniformly in x:

P (t, x,Bc
ε(x)) = o(t), t→ 0,∫

Bε(x)
(yi − xi)P (t, x, dy) = bi(x)t+ o(t), t→ 0,∫

Bε(x)
(yi − xi)(yj − xj)P (t, x, dy) = aij(x)t+ o(t), t→ 0.

where Bε(x) is the Euclidean ball of radius ε centered at x. Then the in-
finitesimal generator A of the Markov semigroup associated to the Markov
family is defined on all functions f such that f itself and all its partial
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derivatives of first and second order are bounded and uniformly continu-
ous. For such functions

Af =
1

2

∑
ij

aij∂ijf +
∑
i

bi∂if.

6. Consider a Markov process X in R2 given by

X1(t) = X1(0) +W (t),

X2(t) = X2(0) +

∫ t

0
X1(s)ds.

Find its generator on C2-functions with compact support.
7. Consider the Poisson transition probabilities, i.e., fix a number λ > 0

and for i ∈ Z and t ≥ 0, let P (i, t, ·) be the distribution of i+ πλt, where
πs denotes a random variable with Poisson distribution with parameter
s > 0. In other words,

P (i, t, {j}) = e−λt
(λt)j−i

(j − i)!
, i ∈ Z, j ∈ {i, i+ 1, . . . , }, t > 0.

Find the generator of the Markov semigroup on all bounded test functions
f : Z→ R.

8. Find the transition probabilities and generator associated to the OU pro-
cess (see, e.g., the second HW assignment or lecture notes for a definition
of OU process).

9. Let W be a standard Wiener process. Prove that W 2
t − t is a martingale.

10. The so-called Stratonovich stochastic integral may be defined for a broad
class of adapted processes Xt via∫ T

0
Xt ◦ dWt

def
= lim

max(tj+1−tj)→0

∑
j

Xtj+1 +Xtj

2
(Wtj+1 −Wtj ) in L2.

Impose any conditions you need on X and express the difference between
the Itô and Stratotovich integrals in terms of quadratic covariation be-

tween X and W . Compute
∫ T

0 Wt ◦ dWt. Is the answer a martingale?
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4. Due by May 6, 11:00am

M2
c = {square-integrable martingales with continuous paths}

1. Prove that if (Mt,Ft) ∈M2
c , then

E[(Mt −Ms)
2|Fs] = E[M2

t −M2
s |Fs] = E[〈M〉t − 〈M〉s|Fs], s < t.

2. Suppose (Mt,Ft) ∈M2
c , X is a simple process, and (X ·M)t =

∫ t
0 XsdMs.

Prove that

E[((X ·M)t − (X ·M)s)
2|Fs] = E

[∫ t

s
X2
r d〈M〉r|Fs

]
, s < t.

3. Let M ∈M2
c . Prove that

Y · (X ·M) = (Y X) ·M
for simple processes X,Y . Find reasonable weaker conditions on X and
Y guaranteeing the correctness of this identity in the sense of square
integrable martingales.

4. Suppose (Mt,Ft) ∈M2
c , and X,Y are bounded processes. Prove that

〈X ·M,Y ·M〉t =

∫ t

0
XsYsd〈M〉s.

Here, for two processes M,N ∈ M2
c the cross-variation 〈M,N〉t is

defined by

〈M,N〉t =
〈M +N〉t − 〈M −N〉t

4
.

5. Let us define the process X by

Xt = eλtX0 + εeλt
∫ t

0
e−λsdWs, t ≥ 0.

Here λ ∈ R, ε > 0, W is a standard Wiener process, and X0 is a square-
integrable r.v., independent of W . Prove that

dXt = λXtdt+ εdWt.

6. Prove that if f : [0,∞) is a deterministic function, bounded on any in-
terval [0, t], then

Xt =

∫ t

0
f(s)dWs, t ≥ 0,

is a Gaussian process. Find its mean and covariance function.
7. In the context of Problem 5, find all the values of λ with the following

property: there are a and σ2 such that if X0 ∼ N (a, σ2), then Xt is a
stationary process.

8. Suppose u0 : R → [0,∞) and φ : [0,∞) × R → R are smooth bounded
functions. Suppose that u : [0,∞)×R→ R is a smooth function satisfying

∂tu(t, x) =
1

2
∂xxu(t, x) + φ(t, x)u(t, x),

u(0, x) = u0(x).
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Prove that

u(t, x) = Ee
∫ t
0 φ(t−s,x+Ws)dsu0(x+Wt), t > 0, x ∈ R,

where W is a standard Wiener process.
9. Suppose a ∈ R, σ > 0, x0 > 0, and W is the standard Wiener process.

Find constants A,B ∈ R such that the process S defined for all t ≥ 0
by St = x0 exp(at + σWt) (and often called “the geometric Brownian
motion”) satisfies the following stochastic equation

dSt = AStdt+BStdWt, t ≥ 0.

Find necessary and sufficient conditions on a and σ for (St) to be a
martingale.

10. Suppose (Wt,Ft) is a Wiener process and (Xt,Ft) is a bounded process.
Use the Itô formula to prove that

Zt = exp

[∫ t

0
XsdWs −

1

2

∫ t

0
X2
sds

]
, t ≥ 0,

is a local martingale w.r.t. (Ft). (In fact, it is a true martingale)


