PROBABILITY: LIMIT THEOREMS II, SPRING 2015.
HOMEWORK PROBLEMS

PROF. YURI BAKHTIN

Instructions. You are allowed to work on solutions in groups, but you

are required to write up solutions on your own. Please give complete solu-
tions, all claims need to be justified. Late homework will not be accepted.

10.

Please let me know if you find any misprints or mistakes.

1. DUE BY MARCH 4, 11:00AM

. Let (X, )nen be an i.i.d. positive sequence, and S,, = X1 + ...+ X,,. Let

Ni = sup{n : S, <t}. Prove that (IVy)icr, is a stochastic process.

Let (W;)ier, be a Wiener process. Find cov(W, W;).

Prove that every Borel set B in R? is regular, i.e., for every probability
Borel measure u, every € > 0, there is a compact set K and open set U
such that K € B C U and pu(U \ K) < e.

Prove that cylinders C(t1,...,t,, B), B € B(R"), t1,...,t, > 0, n € N
form an algebra.

. We defined the cylindrical o-algebra as the o-algebra generated by ele-

mentary cylinders. Prove that if we replace “elementary cylinders” by
“cylinders” we obtain an equivalent definition.
Let Fr = o{C(t1,...,tn,B): t1,...,t, € T} for T C T.

Prove that

BR"= |J Fr

countable T'CT

Use characteristic functions to prove the existence of a Wiener process
(up to continuity of paths).

Let (X¢)e[o,1) be an (uncountable) family of i.i.d. r.v.’s with nondegen-
erate distribution. Prove that no modification of this process can be
continuous.

A multidimensional version of the Kolmogorov—Chentsov theorem. Sup-
pose d > 1, and there is a stochastic field X : [0,1]¢ x Q — R that satisfies
E|X(s) — X(t)|* < C|s — |98 for some a, 3,C > 0 and all t,s € [0,1]%.
Prove that there is a continuous modification of X on [0, 1]¢.

Prove the following statement. Suppose there is a family of ch.f. (¢s(-))o<s<t

such that for all A € R and all ¢; < t5 < t3,

¢t1,t2 ()‘)thmt:a ()‘) = ¢t1,t3 (>‘)
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PROF. YURI BAKHTIN

Then for every distribution function F', there is a stochastic process
(Xt)ter . with independent increments such that X ~ F'and EeiM(Xe=Xs) =
¢st(A) for all s < ¢t and X € R.
Show that the Kolmogorov—Chentsov theorem cannot be relaxed: in-
equality E|X; — X,| < C|t — s| is not sufficient for existence of a contin-
uous modification. Hint: consider the following process: let 7 be a r.v.
with exponential distribution, and define X = 1 ;<.
Prove that there exists a Poisson process such that:

(a) its realizations are nondecreasing, taking only whole values a.s.

(b) its realizations are continuous on the right a.s.

(c) all the jumps of the realizations are equal to 1 a.s.
Give an example of a non-Gaussian 2-dimensional random vector with
Gaussian marginal distributions.
Let Y ~ N(a,C) be a d-dimensional random vector. Let Z = AY where
A is an n X d matrix. Prove that Z is Gaussian and find its mean and
covariance matrix.
Prove that an R%valued random vector X is Gaussian iff for every vector
b€ RY, the r.v. (b, X) is Gaussian.
Prove that (s,t) — tAs defined for s,¢ > 0 is positive semi-definite. Hint:

(Lo,5 Lio,s)) £2(my) =t A S
Prove that (s,t) — e~ 1% is positive semi-definite.
Prove that if X is a Gaussian vector in R? with parameters (a,C) and
C is non-degenerate, then the distribution of X is absolutely continuous
w.r.t. Lebesgue measure and the density is
B 1
 det(C)1/2(2m)d/2
Find a condition on the mean a(t) and covariance function r(s,t) that

guarantees existence of a continuous Gaussian process with these param-
eters.

(C~H(a—a),(z—a))

_1
e 2

px ()

Suppose (X, X1,...,Xp) is a (not necessarily centered) Gaussian vector.
Show that there are constants cg,cy, ..., c, such that

E(X()’Xl, e ,Xn) =cp+c1X1+...+cnXn.
Your proof should be valid even if the covariance matrix of (X1,...,Xp)

is degenerate.

Consider the standard Ornstein—Uhlenbeck process X (Gaussian process
with mean 0 and covariance function (s, t) = e~ lt=51).

(a) Prove that X has a continuous modification.

(b) Find E(X4| Xl,XQ,X3).

Prove that for every centered Gaussian process X with independent in-
crements on Ry = [0,00), there is a nondecreasing nonrandom func-
tion f : Ry — R4 such that X has the same f.d.d.’s as Y defined by
Y (t) = W(f(t)), for a Wiener process W.
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2. DUE BY MARCH 25, 11:00AM

. Suppose the process X; is a stationary Gaussian process, and let H be the

Hilbert space generated by (X;)scr, i.e., the space consisting of L2-limits
of linear combinations of values of X;. Prove that every element in H is
a Gaussian r.v.

. Find the covariance function of a stationary process such that its spectral

dx
14+22°

measure is p(dz) =

. Give an example of a weakly stationary stochastic process (X, )nen such

that (X1 + ...+ X,,)/n converges in L? to a limit that is not a constant.

. Let (X¢)1er be a weakly stationary centered process with covariance func-

tion C and spectral measure p. Find the covariance function and spectral
measure for process (Y;)icr defined by Y; = Xo;.

. Let (X,,)nez be a weakly stationary process. Prove that for any K € N

and any numbers a_g,a_g+1,-..,aK5—1,ax, the process (Y,),cz defined
by

K
Yn: Z aanJrk
k=—K

is weakly stationary. Express the spectral measure of Y in terms of the
spectral measure for X.

. Let stationary process (X,)nez satisfy E|Xy| < oco. Prove that with

probability 1, lim,_. (X, /n) = 0.

. Consider a map 0 : Q@ — Q. A set A is called (backward) invariant if

0~'A = A, forward invariant if A = A. Prove that the collection of
backward invariant sets forms a o-algebra. Give an example of 2 and
0 such that the collection of forward invariant sets does not form a o-
algebra.

. Consider the transformation 6 : w +— {w + A} on [0,1) equipped with

Lebesgue measure. Here {...} denotes fractional part of a number. This
map can be interpreted as rotation of the circle parametrized by [0, 1)
with endpoints 0 and 1 identified. Prove that this dynamical system is
ergodic if and only if A\ ¢ Q.  Hint: take the indicator of an invariant
set and write down the Fourier series for it (w.r.t. €27"*). What happens
to this expansion under 67

. Prove that every Gaussian martingale is a process with independent in-

crements.
Let (X, Ft)t>0 be a continuous process. Let a > 0, and let

T =inf{t: X(¢t) > a}.

Show that 7 is a stopping time w.r.t (Fiy)i>0, where Fip = (.o Fie-
Show that if 71 < 79 < ... are stopping times w.r.t. to a filtration (F),
then 7 = lim,,_, o, 75, is also a stopping time w.r.t. to (F).

Let 7 = {A: An{r <t} € F} for a filtration (F;) and a stopping
time 7. Show that F. is a o-algebra.
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Give an example of the following: a random variable 7 > 0 is not a
stopping time, F, is not a o-algebra.
Suppose T is a stopping time w.r.t. (F;4). Let us define

P I’271,7_ — \ k |l n < N

me o T keN o M re(Gnam | p0 T
277] + 1 k

S e B 1 B _

n= o = D gttt ) MEN

keN

Prove that for every n € N, 7, is a stopping time w.r.t. (F)i>0, Fr, D
Frq,and 1, | 7.

Prove: if (X¢, F¢)t>0 is a continuous process, then for any stopping time 7,
X, is a r.v. measurable w.r.t. F,.

Let (X¢, Ft) be a continuous martingale and let 7 be a stopping time
w.r.t. ;. Prove that the “stopped” process (X7, Fi)t>0, where X7 =
X at, s also a martingale.
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3. DUE BY APRIL 15, 11:00AM
. Find the density of the distribution of
7 = inf{t > 0: W(t) > b},

where b > 0, and W is the standard Wiener process. Hint: use the
reflection principle to find P{r, < z} first.

(Optional: prove that (73)p>¢ is a process with independent incre-
ments.)
. Let W' and W? be two independent Wiener processes w.r.t. a filtration
(Ft)t>0, and let X be a bounded process adapted to (F)¢>o-

For a partition ¢ of time interval [0,7] (i.e., a sequence of times ¢ =
(to,t1,...,ty) such that 0 =ty <t <to <...<t, =T), we define

Q) =Y A, (WL, —WhHW, —W7).
7

Prove:
lim t)=0 in L*
max(thﬁlftj)*)OQ( )
. Let (F;) be a filtration. Suppose that 0 = Ag(t) + A1 ()W (¢) for all
t, where (Ag,F;) and (A1, F;) are C! processes, and W (t) is a Wiener
process w.r.t. (F;). Prove that Ag =0 and A; =0.
. Show that the function

(z—y

)2
P(s,z,t,T) = P( e 0= dy

1
t—s,x,T) /F \/m
is a Markov transition probability function for the standard Wiener pro-
cess.

. Prove the following theorem (Kolmogorov, 1931) using Taylor expansions
of test functions:

Suppose (P.) cga is a (homogeneous) Markov family on R? with transi-
tion probabilities P(-,-,-). Suppose there are continuous functions a* (z),
bi(z), i,j = 1,...,d, such that for every ¢ > 0, the following relations
hold uniformly in x:

P(t,x,B(x)) =o(t), t—0,

[ = P(erdy) =¥+ ofe), 10,
B:(x)
/ (y' —2")(y’ —a?)P(t,x,dy) = a”(2)t +o(t), 0.
B:(x)
where B.(z) is the Euclidean ball of radius € centered at x. Then the in-

finitesimal generator A of the Markov semigroup associated to the Markov
family is defined on all functions f such that f itself and all its partial
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derivatives of first and second order are bounded and uniformly continu-
ous. For such functions

Af = ;Zaijaijf+2biaif.
1] 1

Consider a Markov process X in R? given by
X1(t) = X1(0) + W (t),

XQ(t) = XQ(O) + /Ot Xl(s)ds.

Find its generator on C?-functions with compact support.

Consider the Poisson transition probabilities, i.e., fix a number A > 0
and for i € Z and t > 0, let P(i,t,-) be the distribution of ¢ + my;, where
s denotes a random variable with Poisson distribution with parameter
s > 0. In other words,

- , e (AT
PGt ) = e
Find the generator of the Markov semigroup on all bounded test functions
f:7Z—R.

Find the transition probabilities and generator associated to the OU pro-
cess (see, e.g., the second HW assignment or lecture notes for a definition
of OU process).

Let W be a standard Wiener process. Prove that W2 —¢ is a martingale.

i€Z, je{i,i+1,...,}, t>0.

. The so-called Stratonovich stochastic integral may be defined for a broad

class of adapted processes X; via

g Xi,\y + X,
d : tip1 T At .
/0 Xeoaw; ™ dim NS EEHTL (W W) in L

max(tj+1—tj)—>0

Impose any conditions you need on X and express the difference between
the It6 and Stratotovich integrals in terms of quadratic covariation be-

tween X and W. Compute fOT Wi o dWy. Is the answer a martingale?
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4. DUE BY MAY 6, 11:00AM
M? = {square-integrable martingales with continuous paths}
. Prove that if (M, F;) € M2, then
E[(M; — M,)?|Fy) = E[M{ — M| Fy] = E[(M), — (M)|Fy), s <t.
. Suppose (My, F;) € M2, X is a simple process, and (X -M); = fg X dM;.
Prove that
t
E[((X - M), — (X - M),)2|F)] = E [ / X3d<M>T\fs} <t
S

. Let M € M2. Prove that
Y- (X M)=(YX)-M

for simple processes X, Y. Find reasonable weaker conditions on X and
Y guaranteeing the correctness of this identity in the sense of square
integrable martingales.

. Suppose (My, F;) € M2, and X,Y are bounded processes. Prove that

t
(X - M,Y - M), :/ X, Y,d(M)s.
0

Here, for two processes M, N € M? the cross-variation (M, N); is
defined by
M+ N);— (M —N);
1 .

<M7 N>t = <
. Let us define the process X by

t
X, = eMXy +ee / e AW, t>0.
0

Here A € R, € > 0, W is a standard Wiener process, and Xy is a square-
integrable r.v., independent of W. Prove that

dX; = A Xdt + edWy.

. Prove that if f : [0,00) is a deterministic function, bounded on any in-
terval [0,¢], then

t
Xt:/f(s)dWs, t>0,
0

is a Gaussian process. Find its mean and covariance function.

. In the context of Problem 5, find all the values of A with the following
property: there are a and ¢ such that if Xo ~ A(a,c?), then X; is a
stationary process.

. Suppose ug : R — [0,00) and ¢ : [0,00) x R — R are smooth bounded
functions. Suppose that u : [0, 00) xR — R is a smooth function satisfying

pult, z) = %&mu(t, )+ (L, p)ult, z),

u(0,2) = ug(x).
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Prove that
u(t,z) = Eelo Slt=satWaldsy (2 + W), >0, z €R,

where W is a standard Wiener process.

Suppose a € R, 0 > 0, xg > 0, and W is the standard Wiener process.
Find constants A, B € R such that the process S defined for all ¢t > 0
by S; = zgexp(at + cW;) (and often called “the geometric Brownian
motion”) satisfies the following stochastic equation

dS; = ASydt + BS;dW,;, t>0.

Find necessary and sufficient conditions on a and o for (S;) to be a
martingale.

Suppose (W, F) is a Wiener process and (Xy, F) is a bounded process.
Use the It6 formula to prove that

t 1 t
Zt:exp[/ Xdes—2/X§ds], t>0,
0 0

is a local martingale w.r.t. (7). (In fact, it is a true martingale)



