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We prove that Schilder’s theorem, giving large deviations estimates for the Brownian motion multiplied 
by a small parameter, still holds with the sup-norm replaced by any Halder norm with exponent LY < f. 

We produce examples which show that this is effectively a stronger result and, as an application, we 

prove Strassen’s Iterated Logarithm Law in these stronger topologies. 

large deviations * iterated logarithm law 

1. Introduction 

Schilder’s theorem giving the Large Deviations Principle for Wiener measure is 

usually stated with respect to the sup-norm topology. It becomes a stronger statement 

if one uses any Holder norm (of exponent (Y < $) instead. 

We prove here that this stronger statement is true as a consequence of the general 

principle of large deviations for Gaussian measures on separable Banach spaces. 

Of course one has to handle the fact that the space of Holder paths is not separable 

and that it is not wise to deal directly with an explicit description of its dual. 

The second section of this paper contains a proof of this Holder Large Deviations 

Principle. Many other proofs are possible as the one hinted at in Ben Arous and 

Leandre (1988), where the basic tool is Fernique-Landau-Schepp’s integrability 

theorem. 
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A stronger topology gives of course a sharper Large Deviations Principle, the 

closure of a set being smaller and the interior larger, but it gives also more continuous 

(or semi-continuous) functions and so it gives a broader scope to the Varadhan- 

Laplace theorem. This was the starting point for the use of Holder large deviations 

in Ben Arous and Leandre (1988) which enabled the second named author and 

R. Leandre to find a surprising example of an exponential decay for a degenerate 

heat kernel on the diagonal in small time, due to a drift term in the horizontal space. 

The main point of this paper is the use of this Holder Large Deviations Principle 

to improve Strassen’s functional law of the Iterated Logarithm, namely to prove 

that in Strassen’s theorem the convergence statement can be made in Holder norm. 

2. Large deviations for HSlder paths 

Let us denote by %Y the Banach Space of all a-Holder paths y : [0, l]+ Iw”, such 

that y(O) = 0, endowed with the norm 

For every S > 0 let us set 

so that the modulus of continuity of y is 6”w,(6). We shall denote by Cea3’ the 

subspace of +Ze- of all paths such that lim s+0 w,(6) = 0. It is wellknown (Ciesielski, 

1960, for instance) that %‘a*’ is a closed subspace of +I?, so that (endowed with the 

norm 11 I],) it is a Banach space, and that it is separable (whereas %Y’ is not). 

Let B be a continuous Brownian motion. Since its sample paths are a-Holder 

continuous for every LY (4, we may consider B as a r.v. taking values in ga3’, (Y <$. 

The main goal of this section is to prove the following large deviations estimate. 

Theorem 2.1. For every Bore1 subset A c Y?@, 

lim sup ~~ log P{~BEA}s -A(A), 
F’O 

lim+i,nf E* log P{EB E A} 2 -A (A), 

where A (A) = inf,,,, h(y), A being dejned by 

ify is a.~., 

otherwise, 
(2.1) 

the operations of closure and interior part being taken in the topology of %T,‘. 0 
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Theorem 2.1 is clearly a refinement of the classical Schilder large deviations 

estimates (Schilder, 1966); we shall prove it as a consequence of the following 

wellknown large deviations result for Gaussian measures. 

Definition 2.2. An abstract Wiener space is a quadrupole ( W, H, j, p) where 

(a) W is a separable real Banach space; 

(b) H is a separable real Hilbert space; 

(c) j is a continuous linear injection H A W such that j(H) is dense in W; 

(d) p is a probability measure on ( W, 93( W)) such that for every w’ E W’, 

I expi(w’, w)p(dw)=exp-~l\j*w’II~ 
W 

where ( , ) denotes the duality between W and its dual W’ and j* : W’+ H’ = H is 

the adjoint transformation of j. 

Theorem 2.3. Let ( W, H, j, p) be an abstract Wiener space. Then for every Bore1 subset 

AC W. 

lim sup s2 log p 
( > 

1, 5 -A,(A), 
F’O & 

lim_pf s2 log p 

where A,(A) = inf,,,,, h,(w), A, : W+ [0, +05] being de$ned by 

illj-‘wll’H Vwgj(Hi), L3 

if w E j(H). 

A proof of Theorem 2.3 can be found in Deuschel and Stroock (1989, 

Theorem 3.4.12). 

Let us denote by ‘% = %([O, 11, Rd) the set of all continuous paths y : [0, l] + Rd 

which are continuous and such that y(0) = 0 and by H, the subspace of ‘% of all 

paths y which are absolutely continuous and whose derivative is square integrable. 

(e is a separable Banach space with respect to the uniform norm and H, is a Hilbert 

space with respect to the scalar product 

If j : H, c, % and p* is the Wiener measure, it is wellknown that (%, H, , j, p*) is 

an abstract Wiener space. 

In order to prove Theorem 2.1 we shall check that (%P”, H, , j, p*) is an abstract 

Wiener space. Even if this is certainly not a surprising fact we think that it deserves 
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to be verified, which is done in the following statement. By the way it implies the 

wellknown fact that %? is the closure of H, in V. 

It should be mentioned that even if we were unable to find the following 

Theorem 2.4 in the literature, many results similar to it are known (see Baxendale, 

1976, for instance). 

Theorem 2.4. Let W,, W, be separable Banach spaces, H a separable Hilbert space 

such that H =$ W, v W,, all the embeddings being continuous. Let t.~ be a probability 

mea.sure on W, such that ( W,, H, j, t_~) is an abstract Wiener space and p*( W,) = 1. 

Then if j( H) is dense in W, and Y denotes the trace of f~ on W, , ( W, , H, j, v) is an 

abstract Wiener space. 

Proof. The trace probability v is defined on the trace v-field 3, of 33( WJ on W,. 

Let us prove first that .%, = %( W,), or, which is equivalent by the Hahn-Banach 

theorem and separability, that every w{ E W; is measurable with respect to 3, (the 

inclusion 3, c %‘( W,) is obvious since W, - W, continuously). 

Let us remark first that W; is dense in Wl, in the weak* topology. Otherwise, by 

the Hahn-Banach theorem applied to the locally convex vector space W, endowed 

with its weak* topology, there would exist a 0 f w, t W, such that (w, , wi) = 0 for 

every wi E W;; this is impossible since by assumption W, , which contains j(H), is 

dense in W, and thus W; separates the points of W,. 

It could be seen that Wl, is exactly the smallest space of functions on W, which 

contains Wi and is stable by pointwise limit of sequences of W,. Clearly this space 

is contained in W{ by the Banach-Steinhaus theorem, and is closed in the weak* 

topology of W: , by the Krein-Smulian theorem and the metrizability of this topology 

when it is restricted to the balls of W;. So W: is 3,-measurable. 

It is a wellknown fact that pointwise convergence of sequences of Gaussian r.v. 

implies that the limit is Gaussian and the convergence takes place in L’. So, using 

the previous argument, it is easy to see that Wi is contained in the closure of W; 

in L’( W, , dv) and is a Gaussian space. 

It remains to prove that for w’, w” belonging to W{, we have 

J w’w”du = (j*(w’), j*(w”))H 
WI 

(2.2) 

For W’E Wi, let M,,,, be the set of W”E Wi for which (2.2) is true. If W’E W;, M,, 
contains Wi and is stable by pointwise limit of sequence, because if { w,}, converges 

weakly to w in W;, {j*(w,)},, converges weakly to j*(w) in H. So M,, = W{ . But 

now, if W’E W{, M,, contains Wi and is stable by pointwise limit of sequence. So 

M,.. = W: , and this ends the proof. 0 

Remark. Theorem 2.1 still holds if B is considered as a r.v. taking values in %‘“, 

a <$. It suffices to remark that B takes values in %P” a.s., that A = +OO outside 

(eu3” and that V?’ IS a closed convex subset of V (see for instance Baldi, 1988, 

Theorem 1.2). 
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The arguments of this section also give a Large Deviation Principle in Holder 

norm for the Brownian bridge. 

Example. Let r), p, m, a, b be positive numbers such that p < m and 

so that 

Let 

It can be checked that the uniform closure of A contains 0, so that the usual Schilder 

theorem gives no information about the decay of ~(A/F) (for a similar line of 

reasoning see Lemma 1.5 of Ben Arous and Leandre 1988). 

But it is also a simple fact that the closure of A in V,” for (b - a)/( am - bp) < a <i 
does not contain 0 so that by Theorem 2.1, lim sup,,, e2 log ~(A/E) <O. 

In the same way if 

then the usual Schilder result can only give 

lim sup c2 log E(ee”F-“FZ) s 0 
F-0 

because the only 1.s.c. definition of F at 0 is F(0) = 0. But in Holder norm F(0) = +CO 

gives a 1.s.c. function, so that 

lim sup E’ log E(e-‘(F’)‘FL) ~0. 
F-0 

3. Strassen’s theorem in HSlder norm 

Let B be a continuous Brownian motion and let us consider for t > 0, 

B,,(w) 
(t log log t)“2’ 

0C.sG-l . 
> 

(3.1) 

For every t > 0 5, is a r.v. taking values in %’ and it is a classic result of Strassen 

(1964) that as t + 00, (l,), is relatively compact and has 

YC= y; y is absolutely continuous and 4 
i J (I1 ly’(s)j2 ds i I> 

as limit set a.s. Our goal is to prove Strassen’s theorem in Holder norm. 
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Theorem 3.1. Let & : 0 + %F’, a <i, be defined through (3.1). Then as t+oO (<,),-,0 

is relatively compact and has X as limit set a.s. in the %I?@ topology. 0 

Theorem 3.1 will follow from Propositions 3.5 and 3.6 below. The idea of the 

proof is simple once one remembers the way Strassen’s Law can be proved using 

Large Deviations estimates (see Baldi, 1986, for instance). 

Let us note 

LL( t) = log log 1, r$(t)=xhqTJ. 

Let be c> 1. In the following we shall make use repeatedly of the fact that 

exp(-M LL(c”)) =const/nM (3.2) 

is summable in n if and only if M > 1. By scaling and Theorem 2.1 if A is a closed 

subset of %F”, one has for every 6 > 0 and large n, 

P{ &,a E A} = P EA sexp(-LL(c”)(A(A)-6)) 
1 

(3.3) 

So that by (3.2), P{& E A} is summable if A(A) > 1. The same argument gives that 

P{,$ E A} for an open set A E R is the general term of a divergent series if A (A) < 1. 

Let us remind finally that YC is compact (the embedding H, L* (ea.’ is compact) 

and that the functional A defined in (2.1) is 1.s.c. We shall note 

YC, = {v E V,O, )( v - y 11 a < 7 for some y E Yt}. 

Lemma 3.2. For every 7 > 0 and c > 1 there exists no = n,(w) such that 5;- E X,, for 

every n > no. 

Proof. By the Bore]-Cantelli lemma it is sufficient to prove that P{&l E YC’,} is 

summable. In view of our previous remarks (Yc’, is closed) we just need to check 

that A(YcG) > 1. Indeed YC= {A G l} and, since the level sets of A are compact, A 

has an absolute minimum y. in YL:. If A (XC,) c 1 that would imply A ( yo) G 1 and 

thus y. E YL, which is impossible. 0 

Let us set 

Lemma 3.3. For every E > 0 there exists c, > 1 such that for every 1 < c < c, there exists 

no= n,(w) such that Y,(o) s E for every n 2 no. 

Proof. We have to prove that P{ Y,, > F} is summable. 
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=p J&)sEA 1 I 
where AE %‘( SF’) is the set of paths 

A= ye%-‘, 
1 

sup IlY.-Y.,“llm~~/~ . IGUSC I 

Since A is closed in CeaTo we have just to prove that if c > 1 small enough then 

A(A)> 1. Indeed 

SUP IIy.- Y.,“Il, = sup 
,G”c--c 

Thus if y E A one has for some values of s < t, 1 G ZI G c, 

= 

= 

s ( 

Thus if y E A, 

~:~y’(r)dr-j:~y’(r)drl 

I 
f 

y’(r) dr - 
IV(l/U) i 

.SA(l/“) 

y’(r) dr 
s/c 

~t-sv(t/21)~1’2+JSh(t/21)-sS/ZI/”2)~~Y’~~~~. 

2 

( 

It-.+ 

> 

2 

A(y)+ It-~v(t/v)~“2+~Sh(t/2))--S/V~1’2 

so that from the following Lemma 3.4, 

A(y)z(~~/32c)(c-l)‘~-’ 

which implies A(A) 2 (~*/32c)(c - 1)2a-‘, and since 2a - 1 < 0, for c > 1 small 

enough one has A (A) > 1. 0 



178 l? Bald et al. / Large deuiatiom and Strassen’s theorem 

Lemma 3.4. Zf 

F(v, s, t) = ( It --sIfl 
(t-sv(?/v)J”‘+~sA(t/v)-s/v[” > 

then 

F(s, 1, v)s$JC-11Jm-“2 

forevery l~v~c,O~s<t~l. 

Proof. We shall consider separately the two cases t/v s s and t/v 3 s. If t/v s s 

then (t/v) v s = s, (t/v) A s = tf v so that the denominator equals 

~t-ssJ”2+((l/v)(t-S)~i’2=(l+1/v”2)~f-S~”~. 

Thus 

F(v, s, t) = $ It _44/2=s42 -&s-l\“~‘/’ 

If conversely t/v 2 s then (t/v) v s = t/u, (t/v) A s = s and the denominator equals 

(t”‘+ s”‘)(l- l/v)“’ so that 

It - $ 11-s/q 
F(v, .% t) = I1 _-l/v~l/2(tl/2+SI12) = II _I/vJl12(f-~~ll’+Sl12t-~~) 

~~(v-1)“~‘/‘~f(c-1)“~‘:2 

which ends the proof. q 

Let us remark now that 

sup l/i’, -i‘,‘Il<e 
(‘I. L( (“‘I 

Now the first term in the right hand side is what we called Y,,, which is =S 1~ for 

n 2 n,, by Lemma 3.3 if c> 1 is small enough. As for the second term (j&r (ICI s 

~$(c”)(l +a) for n 2 n,, by Lemma 3.2, whereas 

lim 4(c”) 1-p 1 1 
,,‘uT 4(c”) 4(c”+l) = 1 -c-l’-. 
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Thus, if c is chosen close enough to 1, for n 3 n,, 

sup,?+, IIt, -5&Y c e. 
c”Z IIS< 

Combining (3.4) with Lemma 3.2 we get easily: 

179 

(3.4) 

Proposition 3.5. For every F > 0 there exists t, = t,(w) such that for t 2 t, 5, is in a 

neighborhood of radius F of X. 0 

Proposition 3.5 implies that (&‘,),_, is relatively compact and that all its limit 

points lie in X. The proof that every f~ X is a limit point is not different from the 

case of the sup-norm. We give a sketch of it here only for sake of completeness. 

We shall use in the following the notation: 

ItiseasytocheckthatforO~r~u~v~l, IlfIln,r,u+Ilf(la,U,l.~IlfII~r,r,l,. LetfE%F” 

be such that h(f) < 1 and let us define 

-z?(t) = 1 0, t s c-‘, 

(B,.,~,-B,,~ I)/c$(C”), c-Is t=z 1. 

{Z,,}, is a sequence of independent %“,0 -valued T.v., because of the independence 

of the increments of the Brownian motion. Moreover, for cm1 s tc 1, Z,(t) = 

{<fs( t) - &(c~‘), thus by (3.3) with 

A = {r; IIY - Y(C-‘) - WfW’))ll<v,c+,, <hI 
one has 

Thus by the Borel-Cantelli Lemma and (3.2), 

I15~~~-k~‘~~~‘~-~f-f~~~1~~ll~,,~~,,~:~ 
for infinitely many values of n. Since 

by Lemma 3.2, 

for n 2 n, = n,(w). Also easily 

Ilf II a,O,cF’s v5Ca-‘/2. 

Putting together (3.5), (3.6) and (3.7) one has 

II& -f II cL s;77(2+JZ)ca-“2 

(3.5) 

(3.6) 

(3.7) 
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for infinitely many values of n. Choosing c > 1 large enough, 7 being arbitrary, this 

yields that 5, is in any fixed neighborhood of S for a set of values t which is 

unbounded. We have thus proved the following: 

Proposition 3.6. Every f E X is a limit point of (l,), as t + +OO. 0 

References 

P. Baldi, Large deviations and functional iterated logarithm law for diffusion processes, Probab. Theory 

Rel. Fields 71 (1986) 435-453. 

P. Baldi, Large deviations and stochastic homogenization, Ann. Mat. Pura Appl. 151 (1988) 161-178. 

P. Baxendale, Gaussian measures on function spaces, Amer. J. Math. 98 (1976) 891-952. 

G. Ben Arous and R. LCandre, Decroissance exponentielle du noyau de la chaleur sur la diagonale II, 

to appear in: Probab. Theory Rel. Fields (1988). 
Z. Ciesielski, On the isomorphism of the spaces H, and m, Bull. Acad. PO]. Sci. 7 (1960) 217-222. 

J.-M. Deuschel and D. Strook, Large Deviations (Academic Press, Boston, MA, 1989). 

M. Schilder, Asymptotic formulas for Wiener integrals, Trans. Amer. Math. Sot. 125 (1966) 63-85. 

V. Strassen, An invariance principle for the law of the iterated logarithm, 2. Wahrsch. Verw. Gebiete 3 

(1964) 211-226. 


