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We study large deviations properties related to the behavior, as ¢ goes to 0, of
diffusion processes generated by e2L, + L,, where L, and L, are two second-order
differential operators, extending recent results of Doss and Stroock and
Rabeherimanana. The main tool is the decomposition theorem for flows of
stochastic differential equations proved by Bismut and Kunita. We give another
application of flow decomposition in a nonlinear filtering problem.  © 1996 Academic

Press, Inc.

1. INTRODUCTION

The purpose of this work is to show how the decomposition theorem for
flows of stochastic differential equations proved by Bismut [4] and Kunita
[9] can be used to obtain new large deviation principles for the diffusions
generated by ¢2L, + L,, when L, and L, are two second-order differential
operators, and when ¢ — 0. This problem is now classical when L, is first
order (see Freidlin and Wentzell [8], Azencott [1]). It has also been
treated when L, is the Laplacian (Bezuidenhout [3]) and when L, can be
written as a sum of squares of vector fields L, =33, X7, where the Lie
algebra generated by the X; is abelian (Doss and Stroock [7]), or nilpotent
(Rabeherimanana [ 111]). These authors give a large deviations principle for
the law of the random variable R? particular version of the conditional law
of X7 relative to (eB), where X is a solution to the Stratonovich stochastic
differential equation

r t ! 1
Xi=x+e Y [ o/(X0)dBI+ Y &,(X0) dB]+ | d(X0)ds: (L1)
i=1%0 j=1 0
e xeR"
e 1€[0,1];

e For all ie{l,..,r} and all j€{0, .., 1}, o, and &, are sufficiently
smooth vector fields on R”.
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e B and B are two independent Brownian motions, with values in R”
and R’, respectively, defined on the Wiener spaces W= %([0 1], R") and
W=%,[0,1], R'). We will denote by P (respectively P) the Wiener
measure on W (respectively ).

One could wonder whether a large deviations principle for the law of X*
is attainable. As a matter of fact, it is not, as Doss and Stroock have
pointed out. Indeed, the support of the law of the nonperturbed diffusion
X° is not compact, in general. Since the rate function /A associated to the
large deviations of X* vanishes on the support of P°, the level sets {A< L}
cannot be compact. However, X* can be considered as a random variable,

x. (W P) = (L W, %[0, 1], R")
“(eB) - (B Xi(x)).

In this case, there is no obvious contradiction to have a large deviations
principle for the law P, of X,. The support of P, is now a point of
L?(W,6([0, 1], R")), which is obviously compact. And we do obtain a
large deviations principle for the law of X,.

Our result contains the results of [7,11] and extends them to the
general case with no hypothesis at all on the Lie algebra. The key observa-
tion is the fact that a contraction principle can be used if one has two
ingredients

1. the decomposition principle: we recall this result in Section 2.

2. a large deviations principle for flows of stochastic differential equa-
tions.

Such a large deviations principle for flows has been obtained by Millet,
Nualart, and Sanz-Solé [10] and Baldi and Sanz-Solé [2]. We need a
slight extension of it to be able to control derivatives of the flow. We give
the proof of this large deviations principle in Section 3, and we get in
Section 4 to the main theorem that we now state.

THEOREM 7. Let P, be the law of the random variable X, (P, is a prob-
ability measure on L*(W, 6([0, 1], R"))). Then P, satisfi'es a large devia-
tions principle with rate function A defined for all ze L*(W, E) by

A(z) = 1nf{2 |h|%,., he #", such that P a.e.,

z—x—i-Zfa(z hds—i-z dB’—i—j Golz ds}

i=1 j=1
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This contains a large deviations principle for the conditional law R® of
X* relative to (¢B) (as in Doss and Stroock [7] and in Rabeherimanana
[117), as a trivial contraction principle shows.

Finally in Section 5, we show how this method can be used for a
problem in nonlinear filtering, extending earlier results of Doss [6] and
Rabeherimanana [ 11].

2. FLOW DECOMPOSITION FOR STOCHASTIC
DIFFERENTIAL EQUATIONS

We mention here the results of [4, 9] for later use. For i€ {0, ..., k}, let
X; and Y, be €} vector fields on R” (that is differentiable up to order m,
bounded with bounded derivatives). Let us consider the Stratonovich
differential equation

z X,(x,) dB + Xo(x,) dt

i=1

XO:x.

Then there is a version of (7, x)+— x,(x), which is a flow of C™-diffeo-
morphisms in R”, that is an element of 2", where

¢: [0, 1] xR"—> R”, (¢, x)— ¢,(x) such that

Vte[0, 1], ¢,is a C"-diffeomorphism of R”

5“'¢, 0"(¢,)~
T ox! (%), ox'

9" =

VieN" || <m (x) are continuous in (¢, x).

Let ¢,(x) denote this essentially unique version of x,(x). Almost surely, for
all 1€[0, 1], we can then define the stochastic vector fields

¢,

L) o

V0= (2

Let us consider then the Stratonovich differential equation

Z ¢71 yr)dBl+¢ *Yo(yz)dt
P (2.2)

Yo=1D-
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THEOREM 1. 1. There is a strong solution to (2.2) defined on [0, 1].

2. Let z,=¢(y(y)). Then z, is solution to the stochastic differential
equation
k
dz,= ) (X;+ Y)(z,) dB,+ (X, + Y,)(z,) dt
i=1 (2.3)
Zo= .
Proof. Let &, be the strong solution of Eq. (2.3). Let us consider the
process defined for all 7€ [0,1] by ,=¢,'(&,). Then, by the generalized

It6 formula (see Theorem 4.1 in [4]), 7, is solution to Eq. (2.2). Therefore
1 and 2 are proved. ||

Theorem 1 has its It6 counterpart.

THEOREM 2. Let us define

o (Xo+ ¥o)* (x) = Xo(x) + Yo X)+ Z (X;+Y)" (X)(X;+ Y))(x).

. Y#(x) = Yolx +1 I Y
. Yo(x)=Y¥(x + Z ¢« [ X, ¥,1(x)
L& o, »
—5§ 52 (07 % Vi), 671w Vi),

where [ X, Y] is the Lie bracket of the vector fields X and Y.
Let us consider the Ité stochastic differential equation

z¢ y1)5B1+¢ *70(%)511
i=1 (2.4)
Yo=1D-
Then

1. There is a strong solution to (2.4) defined on [0, 1].

2. Let z,=¢,(y,). Then z, is solution to the Ité stochastic differential
equation
k
521 = Z (Xi+ Y,-)(Z,) 63[1 + (XO + YO)* (Zt) dt.

i=1

Proof. The same as Theorem 1. ||
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We will use here Theorem 2 in the following context:
e k=I+r;
« B=(B',..,B, B, .., B");
o Vie{l,.,r}, Y,=0;
o Vie{r+1,..,1+r}, X;=0,

so that Eq. (1.1) splits in two stochastic differential equations, one driven
by the Brownian B, the other by the Brownian B.

3. LARGE DEVIATIONS FOR STOCHASTIC FLOWS

3.1. Notations and Result
In this section, we will consider the Stratonovich differential equation,

déj=e ), o,(e &) dB;
-1 (35)

where

e g,(s,-) are €72 vector fields on R”, for some m>n+1. We will
assume that o,(e, -) converges in %' uniformly on compact subsets of R”
to some vector field o,, when ¢ goes to 0.

e B is a standard Brownian motion defined on the Wiener space
(W, P), where W is the space %,([0, 1], R"), with the topology of uniform
convergence, and P is the Wiener measure.

Let 9" be defined as in Section 2. 2" will be endowed with the ¥%*, or
&°*-topology, defined for all k <m by

« ¢ § iff VK compact subset of R".

a\xl a\ocl n
sup L 0
xeK:te[0,1] 0x 0x n— oo
lo| <k
o ¢" 2% § iff VK compact subset of R”,
6“"'¢, a|a|¢:t
su ) — X
xeK;tep[O,l] 0x” ) ox” ( )H
Jo| <k
o)t ATy
+ (x) = (x) 0.
ax“ ax“ n— oo
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Let @%(x) be the version of &£%(x) which is an element of 2”. Our purpose
is to show a large deviations principle for the law of @° (probability on "
with the %%*-topology). Millet, Nualart, and Sanz-Solé¢ [10], Baldi and
Sanz-Solé [2] have already shown this result for the ¥%° topology. Before
stating the result, we will introduce further notations.

Let o#" be the Cameron—Martin space over R”

h:[0,1] - R", A(0) =0, & absolutely continuous with respect to

—

1 .
Lebesgue measure, such that f A2 dt < .
0

A" is a Hilbert space for the inner product (h, g),,.= (44, ¢, dt. Given
he #", we associate to (3.5) the ordinary differential equation

r

dx(h)="Y, a,(x(h) h}di
i-1 (3.6)
Xo(h)=x.

Under the assumptions made on the vector fields, x(/) is an element of &".

Thus, we define a map
F. " - 9"
(3.7)
hi— (t, x> x,(h)(x)).

Using the results of Bismut [4], F can be extended in a measurable way to
W: P-ae. F(w)(x) will be a solution to the stochastic differential equation

r

This extension will still be denoted by F.
We define now the rate function associated to the large deviations of the
stochastic flow @°. Let ¢ be in 2"

K¢)=inf{L |h]%,., he #", F(h)=¢}. (3.8)

When A4 is a subset of 2", we will denote by I(A4)=inf{I(¢), pcA}. We
have then the following result.

THEOREM 3. 2" is provided with the €%*-topology, for some k <m—1—
[n/2]. Then

1. I is lower semi-continuous, and for all L >0, {I<L} is a compact
subset of 9"
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2. Forall € 2" such that I(¢) < oo, there exists a unique he #" such
that ¢ = F(h) and I(¢) =5 |h|%,.. Moreover, if a(x)=(0,(X) ---0,(x)) and if
V=),.m Kera(x), then di-a.e., h,e V*".

3. YAc<c 9",

—I(A) <lim infe? log P(®° e A) <lim sup &> log P(®° € A) < —I(A).

e—=>0 e—0

These results remain true when 2" is provided with the €°*-topology.

3.2. Proof of Theorem 3

Large Deviations for the €**-topology

First of all, let us note that the map F defined by (3.7) is continuous
from #7 ={he A", |h| . <a} endowed with the uniform convergence, to
(2", 6°%). Let, indeed, f and g be two functions in #”’ and let x = F(f)
and y = F(g). Then,

2

2 t .
+2|[ oty g, ds
0

0= 1< | [ (ot~ oty .

2

<2k [ v s+ 2| [ ol g ds

And an integration by part then yields
t
Ix, =yl <K llo(y)(f,— &)+ L lo'(yy) ¥(fs— g ds

t
+2Ka? Jo lx, — v, ||°ds

<kif=gl (14 1001 o) & )
+2Ka* | |x,— . |Pds
0

By Gronwall’s lemma, we have then:
lx, =y | <KIf—gl.. (1+Ka).

The same arguments hold for the derivatives of x — y.

Therefore, Lemma 1.3 [1, p. 69], ensures that I is a “good” rate func-
tion. Moreover, when I(¢)< oo, the infimum in the definition of I is
reached.
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We are now going to prove that the point where the infinum is reached
is unique So, let ¢ € 2" be such that I(¢p) < oo. Let hye #" be such that
I(¢) =13 |hol%,- and ¢ = F(h,). Let us define the map
I A" > A7
, (3.9)
h ITh: Hh,zj Py h,ds,
0

where P, is the orthogonal projection on V*. Then it is easy to check that
o IR 4or < Al s
o |ITh| .= |h| . < dt-ae., h,e V*
o F(h)=F(IIh).
Thus, ¢ = F(hy) = F(ITh,) and |h,| = |IThy| ,». Therefore, dt-a.e.,
ho(1) € V', Let us assume now that

¢="Flho)=Fh),  L$)=1/2 | hol % =1/2lhi]3.
The equations satisfied by F(k;) and F(h,) yield

VLYX, a(§dx)) ho(1) = a(¢(x)) Ay (2).
Using the diffefomorphism property of ¢,, we derive that
VL Vx,  a(x)(ho(t) —hy(t)) =0.

Therefore, hy(t)—h,(1)€ V. But we already know that hy(t)—h,(t)e V™.
Therefore, i, =h,, and 2 is proved.

Following Azencott [1], we begin with the “quasicontinuity” of the
map F, in order to obtain 3.

LeMMA 4. VYK compact subset of R", YVa>0, VL >0, YR >0, there exists
by and ¢y >0 such that Yb < by, Ve < ey, YVhe H', ||h| ,<a,

Pl HQ)E_F(h)H(/OA([O 1<) = R |leB—h| <b]<exp(—L/e*).
Proof of Lemma 4

Throughout the paper, C is a constant which can differ from one expres-
sion to the other. Since m >k + 1+ [n/2], Sobolev’s embedding theorem
gives ||| grx) < C |- | wm2 k), Wwhere W 2 is the space of functions differen-
tiable up to order m, whose derivatives are square integrable with respect
to Lebesgue measure. W2(K) is a Hilbert space for the norm

o=f |12
ox*

Il =] ¥

\:x| <m
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Therefore,
P @%— F(h)]| 4. ko1 xx) = B leB—h| <b]

<P| sup |81 F(0) iy > g leB—hl <b .

te[0,1]

So we have to show that YK compact set of R”, Va, R, L >0, there exist
by, 9> 0, such that b <b,, e<g, |h] ,<a imply

I =P[ sup @] —F,(h)|lwnx) =R |eB—h| <b] <exp(—L/e?).

te[0,1]
In the following, we will denote
7% =1nf{7 such that || @ — F,(h)| ym>x = R}.

Then, 11, = P[SuPre[o 1] D7, - % —-F,, sz(h)H k) = R leB—h| <b].
Since the vector fields ¢, are €7, one can easily check that there is a

constant M (depending on « and K), such that

sup sup  [|F(h)| wmrxy < M.

te[0,1] I ||hllpr<a

From the definition of 7%, it results then that sup, .« [P} ymox) < R+ M.
Therefore, since m>n+1, it is proved in Appendix 1 that there is a con-
stant C such that Vje {1, .., r}, Ve, Vre[0, 1],

|lo;(P a,(F, TR( D wmoy <CIP] 2 —F, r’}e(h)H Wwm2(K)

loj(e, @7, ) =0, (D7 )l wmaxy < C lloy(e, -)—G,-(-)\I(gm(;gkw

l/\’[)

(where %y, ,, is the ball of radius R+ M in R"). Thus, Vte[0, 1],

HQBIA‘L'R FIA‘L'( )HW’”’(K)
r

S [ o @0 desl— )

Jj=1

<

wm2(K)

sy "o @) 0,(04)] 1] s

Jj=1

£y [ (@) = o (P | ey ] d

Jj=1
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5 j " g (6, @) d(eBI— h)

j=1

.
C{a 2 loy(e, )=, lgmng 0

Jj=1

[N~ Fu) oy 1R ds .
0

Wm.Z( K)

It follows from Gronwall’s lemma that Vze [0, 1],

Sup Hét A TR Ft A ‘L'{R(h)H W’”*z(K)

tef0,1]
t/\rR . .
<C < sup | j %) d(eB) — h7)
te[0,17 Il j=1 wm2(K)
+ Z HO' ( )Hf{m JR+M)>
Jj=1
Therefore,

I

Y[ ote 02 dloBl— 1))

Jj=1

H1<P{sup
t

R
>5 3 leB— ] <b}

g 2

d R
P| ¥ 10,00 =0 3 IeB—HI <b

j=1
From the uniform convergence of g;(¢, -) to a,(-), we can choose g, such
that

ES gy = Ho'j(gs )= (7_/( Dl G Brs ) < R/2C.

Thus we are led to show that VK compact of R", VR, R, L, a>0, there
exists b, and g, such that b <b,, ¢<s,, A ,,»<a imply

T/\TR

> J, ) d(cB] —h)

Jj=1

L
<exp| ——
£

An integration by part yields /7, < P, + P, + P+ P,, where

I,=P {sup

>R |eB— A <b}

Wm,Z( K)

r R’
PlzP{sup Y. leB]—h]| |o;(e, 458)\|sz(,<)> ;leB— h|<b}

&
t<‘rR j:]

R,
>—; ||eB—h| <b}

Wm,Z( K) 4

Z <o-j(8’ ¢£)’ gBj>t/\r£R

Jj=1

PzzP{sup
t
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i TR (&, @°) 0;(e, D) (eB.—h’) ¢ OB’
Z J\ s s Ry s

ij=1

P,= [sup

wm. 2( K)

!

R
>Z; leB — A <b} ,
where § denotes the 1t6 differential,

5 j (ngj — h/) Trace(c*a]o)(e, &°) ds

Jj=1

P,=P {8 sup

wm. 2( K)

!

R

Treatment of P,. Since sup, H(bmr [ w2y <R+ M, it follows from
Appendix 1 that there is a constant C such that Ve<l, Vje{l,..,r},
sup, |lo;(e, D) wmoxy< C. Therefore, P;<P[Ch>R'/4]=0 for sulffi-
ciently small b.

Treatment of P,.

S oo o8, o= ¥ [ ot @) ote 0y ds

j=1 j=1

Appendix 1 yields then a constant C such that P, < P[¢>C>R'/4], ie
P,=0 for &2 < R'/AC.

Treatment of P,. P,<P[Ce?h>2R'/4]1=0 for ¢ and b sufficiently
small.

Treatment of P5. The control of P, is given by an exponential
inequality for martingales with value in some Hilbert space, proved in
Appendix 2. Let (e,), be an orthonormal basis in W"*(K). Let us denote

° M 21150 (8 QD i(89 ¢§)(8B£_h§) SéBi_

. T‘;—mf{t such that ||eB,—h,| > b}

e S% =inf{z such that | M| m2x =R’}

e T=TR, AT, AS%.
We have then to show that VK compact of R”, VL, R, R’, a > 0, there exists
by and ¢, such that Ve <eg,, Vb < by, Vh, || . <a,

II;=P[ sup |[M:, |lynrx =R']<exp(—L/e).

te[0,1]
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For t<t, M?e W72 and if we denote M*"=(M?, e,), it can be checked
that

t
M=% f (aj(e, () o:(e, D)), e,)(eB]—h]) e OB,
ij "0
by writing the stochastic integrals as L,-limits of Riemann sums. Therefore,

t
M Moy = Y[ (e, @) 0,6 ), e, (Bl — h)

i,j,1 "0

X (0;(89 ¢(\) O-i(ga QIX)’ em)(gB.lv - h{) dS'

This allows us to control the quantities appearing in Appendix 2.

N tnaz
Z J‘ Mi’nMi’md<Mg’n, Ms,m>5
nm *0

tAT 2
=y [ ot 00 o @) P
i 0 j

(where P is the orthogonal projection on Span{e;, i < N})

INT
SCERY | Y lojle, ) 0yle, D) pmagiy 1P d
i J

1

< Ce?h’R? by Appendix 1.

Moreover,

2

N tAT
RIS {z (0)(e, ©%) ,(6, @), e)eBI—h)) | ds
k=1 ik 0 J
< Ce?b? Z jo Z HPN(O';(&‘» D7) g,(e, cDi))Hzl/V’“J(K) ds
i J

< Ce?h* by Appendix 1.
Choosing &> < R'?/Cb?, we obtain by Appendix 2
on| - (4
8Ce*b°R’ &
for b and ¢ sufficiently small. The proof of Lemma 4 is then complete. ||

From Lemma 4, and from the continuity of F from #’ to (2", €°),
inequalities of large deviations are now classical. We refer the reader for
instance to Azencott [1].
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Large Deviations for the €%*-Topology. 1In the following, the ~ index
will concern the ¢**-topology. Using the differential equations satisfied by
the inverse flow, it is easy to see that the function F defined by (3.7) is con-
tinuous from #’, to (2", €**). Therefore, we derive as previously that 7/ is
a good rate functlon in ¢°% topology.

Now, YAc 9" A< A and A< 4, so that I(A ) I(4) and I(A?)<I(/f).
But this does not allow us to conclude. The main point is that when ¢ is
not a ¢”-diffecomorphism, /(¢) = co. Therefore,

I(A)=inf{I(¢), ¢ € A, and ¢ €"-diffeomorphism}.

Assume then that I(4) < oo (the case I(A)= oo is obvious). Let ¢ €4, ¢
€ dlffeomorphlsm be such that I(¢) =I(A4). Let ¢, be a sequence in A4,
such that ¢, N ¢. Since ¢ is a ¢"'-diffeomorphism, we deduce from the
fact that ¢ — ¢! is an open mapping, that ¢, > 2%, §. Therefore I eA and
I(A)<I(¢)=I(A). A similar argument holds for the open sets. ||

4. LARGE DEVIATIONS FOR PERTURBED STOCHASTIC
DIFFERENTIAL EQUATIONS

We will be interested in this section in the perturbed stochastic differen-
tial equation (1.1); (1.1) will be written in its 1t form

dXt=af(X) di+e Y 0,(X?) OB +6HX?) di + Z (X?) 5B
=1 j=1 (4.10)

1 & /06,
A= +3 X (F a0

e B and B are two independent standard Brownian motions,
respectively, defined on the Wiener spaces W=%,([0,1], R") and W=
%,([0,1], R"). W and W are endowed with the topology of uniform con-
vergence, and their Borelian o-fields. We will denote by P (respectively P)
the Wiener measure on W (respectively 1), and by P the measure P® P
on Wx W. So E (respectively E, E) will be the expectation under P (respec-
tively P, P).



36 BEN AROUS AND CASTELL

e E_ will be the space €.([0, 1], R") of all continuous paths starting
from x with values in R”, endowed with the uniform convergence.

e g, and 6, are assumed to be in ¢} with k >max(n+ 1,4+ [n/2]).

4.1. “Pseudo” Large Deviations for X*

We derive from Theorem 3 some exponential lower and upper bounds
for X*, extending the results of [7, 11]. Throughout, we will denote by 4’
the Cameron—Martin space associated to the Wiener space . When
he#", and he #', G(h, h) will be the solution to the ordinary differential
equation

t t
x,=x+f D J,-(xs)liids-l-f
0,;-1 0

ProrosiTiON 5. 1. Let A be an open subset of E.:

liminfe?log P(X° e A)

e—>0

> —inf{ |h|>,., he #" such that I e #', G(h, h) e A}
2. Let A be a closed subset of E .

lim sup ¢ log P(X* € A)

e—>0

< —inf{;m;r,he N {gen",3he ' G(g, E)eAJ}}.

0>0
The closure is taken with respect to the uniform convergence, and
As={yeE.,IzeAd|z— y|| <J}.

The reader is refered to Section 4.3 for the proof of Proposition 5.

4.2. Large Deviations for a Perturbed Stochastic Differential Equation

Using the Biirkholder-Davies—Gundy inequality, it is easy to check that
X?is in all L?(W x W, E.)). But it has already been pointed out that one
can not expect a large deviations principle for the law of X*. However,
Fubini’s theorem allows us to consider the random variable X, defined for
p=2by

X,: W—L/W,E,) (4.12)

Q)HXC(CO, )
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Let P, be the law of X, (probability measure on L?(W, E.)). Our purpose

is to show a large deviations principle for the family (P,),. This will be

done by writing the solution to Eq. (1.1) in terms of the stochastic flow

defined by the stochastic differential equation (3.5) and by applying the

contraction principle. Before stating the result, we define the rate function.
Let ¢ be in &”". We associate to ¢ the vector fields in R”

§ty)=¢, " %6,(»)  Ve{l, .1}
1 62¢
=4 wat-4 ¥ (0] [ GE ot st )|
' (4.13)
We consider then the It6 stochastic differential equation
l ~ .
dZ0=50(t, 20) dt + ) Ej‘(’(t, 29) 6B/
j=1 (4.14)
Z=x

Without assumptions on ¢, the existence of a strong solution to (4.14) is
not ensured. So we will restrict ourselves to flows of diffeomorphisms in
2, where

am —1
peD", sup (%,Z(y)<oo, m=1,2,
" yeR" te[0,1] 0x
sz am¢ (415)
sup 3 m’(y)H<oo, m=1,2,3.
yeR te[0,1] X

7 is an open set of 2" with the C*3 topology. We define the topology
on 27 as the induced topology. When ¢ is in &}, the vector fields s”/ are
bounded and Lipschitz in y, so that (4.14) has a strong solution. Moreover
it is easy to see that E(sup,s[o’l] ¢,29)|7) < oo. For p>2, we can then

consider the map D
D: 27— L"(W,E,)
P (@ ¢ (2/(@))).

D allows us to transfer on L?( W, E.) the rate function I defined by (3.8).

(4.16)

Vze L/(W,E,),  A(z)=Inf{l(¢), p€ 2} D($) =z} (4.17)

(where Inf(F) = +0).
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When A4 is a subset of L?(W,E,), we will denote by A(A4)=
Inf{ A(z), ze A}. Using the expression of the rate function I, we have the
following expression for A.

PROPOSITION 6. For all ze L*(W, E.),

A(z )—mf{2 A%, he A" such that P a.e. Vt,

—x—l—ZJ ,) hids

i=1

+Zj dBf+f oz )ds}. (4.18)

Jj=1

Proof. 1Tt is easily seen from the expression (3.8) of 7 that
A(z)=inf{5 ||h|%,., he #", Fh)e 2}, Do F(h) =z},

where F is the map defined by (3.7). Now using the ordinary differential
equations satisfied by the derivatives of F(/) and F(h) !, one can deduce
from Gronwall’s lemma that F(#") is included in 2j. Furthermore,
Theorem 2 shows that Do F(h) is a solution to the stochastic differential
equation

—x+2j Az B ds+zj

i=1 j=1"0

z)dBi+ [ Gz ds. 1

Once the rate function A is defined, we can state the large deviations
principle for the family (P,).

THEOREM 7. o A is a good rate function.
« VA< LW, E,),

—A(A) <lim inf e? log P,(A) <lim sup &> log Pe(A) < —A(A).  (4.19)

£=0 e—0

Before proving Theorem 7, we would like to underline that it extends to
the nonnilpotent case the results of Doss and Stroock [ 7] when the vector
fields o, commute and those of Rabeherimanana [ 11] when the Lie algebra
generated by the g, is nilpotent. In these two papers, a particular version
R*> of the conditional law of the process X relative to (eB) is considered,
and a large deviations principle is obtained for the law Q, of the random
variable we Wi R=*®“) e /(E ) (Q, is an element of .4 (#,(E.))).
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Applying the contraction principle, we deduce this large deviations prin-
ciple from Theorem 7 without nilpotence assumptions.

COROLLARY 8. 1. The map D can be extended to F(W), where F is
defined by (3.7).
2. When ¢ € F(W), let N? be the law of the process D(¢). Let us define
R*B by NT¢B) Then R*E is a version of the conditional law of X* relative to
(eB).
3. When u is an element of M,(E.), let us define

A(p) =inf{ 3 |h|%,., he A, such that u is the law

of the process z, solution to (4.18)}.

If 6=(0,---0,) is a constant matrix such that a = oac* is invertible, then

()1 ds, if ne{R" herx}
+ 00, otherwise.

4. Let Q, be the law of the random variable > R*™®), and let A be
a subset of M(E.). Then

—A(Ad)< hm mfs log 0,(A)<limsup & log Q(A4)< —A(A). (4.20)

e—>0

Proof of Corollary 8. 1 and 2 are consequences of Theorem 2, where it
is proved that, when ¢ is in F( W), Eq. (4.14) has a strong solution defined
on [0, 1] and that P-ae. Ve [0, 1], Xi(w, ®) = D(F(eB(w))), (D).

Statement 3 is quite obvious, since if u = R”", then taking the expectation
in (4.18) yields

E(0w,)=x+ JO oh, ds + JO E, 65 (w,) ds.

u

Since | E,(w,) fE,,(5(’>k(wr))H,21—1 =inf{|x[? ox=E (0,) — E(5§(®,))},
5102, =3 {0 IE(w,) — E,(6&(w,))| 21 ds. This inequality being true for

all / such that z = R", it also holds for A(u).
Moreover, let P be the orthogonal projection on G=(Ker( ))*, and

define I7h by ITh,= [} Ph,dt; then u=R™, ollh,=E (0, — E (6§ (®,)).
But, since go* is 1nvert1ble 0g. G- R"is 1nvert1ble dnd

Th, =02 (Ea,) — E(68w,)).

u
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Thus,

u

D
IR = | NE@,) = EG3©))]
1 —
=], 1Ed@) ~E (o83

and A(u) <3 1Th)% <5 [ |E(0,) — E (6§ (w,))] -1 ds.
4 is derived from the contraction principle. Indeed, the map
Lp( I/~Va Ex)a Pa - %I(E\c)

_ (4.21)
Z > the law of Z under P

is continuous when .Z,(E.) is endowed with the topology of weak con-
vergence. Moreover, it transforms P, into Q,. ||

Remark. Let q,(s,-) be the conjugated quadratic form of E, (o(w,))
E (o(w,))*, that is,

"
q,(s, x) =inf{ |w]|?, E,(a(w,))w=x}.
Then, Proposition 6 of [ 7] says that

Alu) = %Ll qﬂ(SaE;@)—Eﬂ(ﬁé‘(ws)))ds if pe{R" hew"

+ o0 otherwise.
It seems that this assertion is false. Let us consider the case
en=r=I[=1;
eg=10(x)=x;6,=0;
e x=0.

Then the law x of the Ornstein—Uhlenbeck process dz, =z, dt + 6B, can be
expressed as R" with h,=t. For all ¢, E(a(z,)) = E(z,) = 0. Thus,

{0 if x=0
+ 0 otherwise’

J‘Ol q#(s’ E;(_CES) - E,u(&(;k(ws))) ds=0.

But, if A(u) =0, then x = R’ that is, y is the law of the Brownian motion.
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4.3. Proof of Proposition 5 and Theorem 7

LEMMA 9. When 27 is provided with the €°° topology, the map D
defined by (4.16) is continuous.

Proof of Leig@ma 9. Let ¢" and ¢ be flows of diffeomorphisms in &7
such that ¢" %= ¢,

1D(@") = D) Loiw. g = EL sup 1197(Z0") = ¢ ZDIP]"7 < Ty + T,

te[0,1]

where
n
1

a -~ 71
%% ()| Esup 12 — 217

T, =sup

Ly

T,= E[Sgp I¢7(Z9) = dZD)I7 17

Treatment of T,. The first derivatives of ¢” converge uniformly on
compact sets of [0, 1] xR” to the first derivatives of ¢, (which are
bounded). Hence, sup,, , [(047/0x)(y)|| < +o0. We have now to show
that E[sup, 2¢' —2¢]"] e 0.

For te[0,1], let f,(7)=E[sup,cio,q 22" —2?|7]". The triangle
inequality in L” and the convexity of x — x” for p > 1 yield

- t ., ., 1/p
10 <E| [ 158020 =55, 201 ds |
0
. ! . 1%/4
| [ 150105200 5405, 201 ds |
0

+E[ sup
se[0,¢]

Zf S, 2~ 52 ))6%@1/”.

Using the Biirkholder—Davies—Gundy inequality there exists a constant C
such that

s 1/p
E| sup | 3 [ 020 —570w 200 0B |
1

se[0,7]

)
<c2[([' S itz -stw )|

Jj=1
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Lo : ! p/27 Up
<Cy Em 159", 2) =52, 20)] du> }
j=1

e 3 B[z -t zora) |

o5 t, - t ., 1/p
S B [zt - 2t
Ox 0

] -

N 1/p
+C T E| [ Itz - stz d |

But, E[ ({1129 222 du]l"” < ([} f,(u)? du)”?. Furthermore, the €°°
convergence of ¢” to ¢ implies the uniform convergence on compact
sets of [0,1]xR" of §7" and its first derivatives to §¢ and its first
derivatives, which are bounded since ¢ is an element of &7. Therefore,
SUp,.,.,.; H@Sff"(t, ¥)/0x|| < 4+o0. Thus there exists a constant C such that

1

r<c| [ rsass £Y I 2 ([ 157 220 =570 20017 )|

Gronwall’s lemma yields then
/
welo. 1l fi0<C Y E( f 15, 28— 50w, 2)]17 du>
and we have to show that
2 1 7 ~,
vje{o, .1}, E<j0 159" (u, 20) — §0(u, 2 )Ipdu>m> 0.
Let R be a positive real number and #(0, R) the ball of radius R in R”,
~ l n
B([] 15720~ 30 2017 au
o ‘
< sup I7°(2, ) —=52(2, p)|I”

te[0,1],ye#(0,R)

+2p_1E[ﬂsup,e[01] \\"¢\\>R sup (‘|~(M(Z J/)Hp+ ngb(ly y)”p]
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The convergence of ¢” to ¢ implies that sup, , (157, y)| + [5(z, ¥)I)
< o0; thus, there is a constant C such that

-~ ! ~ ~ ~ ~ n
B([[ 1571020 =510 2007

< sup I59°(1, y) =302, )7+ CP( sup ||IZ{] = R).

1e[0,17, ye#(0,R) te[0,1]

Let #>0. Since 2/ is solution to a stochastic differential equation with
bounded coefficients, we can find R such that CP(sup,. o, 12| > R) <
n/2. Let ngeN be such that Vn=ny, SUp,_(o1y ,ecmon IS7 (4 Y)—

52(t, y)|” <n/2. Then for n=ny, E([§ 59" (u, Z0) —52(u, 20)|” du) <.

Treatment of T,. Since ¢" and ¢ are elements of &7, and ¢" AL ¢, one
can choose constants K, and K such that

. Vte[0, 1], ¥yeR",

l¢7(»)
I () <KL+ [yl

<K, (1+]yl)

e sup, K, < +o0.

Therefore,

T8< sup  [¢(y)—d(»)”

t,ye #(0,R)

+ C(Sup Kn +K) E[Sl}p (1 + HE?HP) ﬂsup, Hf"/,)HI’>R]

< sup [[97(4, y) — o, Y)I”

t,ye #A(0,R)
+ CE(sup (1+|27]1*))'? P[sup |IZ/]| > R]"">.
A —_— / !
~

Let #>0. Let R be such that the second term is less than 7/2. From the
uniform convergence of ¢” to ¢, we can then find »n such the first term is
less than #/2. Lemma 9 follows. ||

We are now able to prove Theorem 7 and Proposition 5. The key is to
write X* in terms of the stochastic flow defined by (3.5) using the map D
and, then, to apply the contraction principle. The only technical point is
that the probability for the stochastic flow to be in & is strictly less than
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one. So we will have to truncate the vector fields o;. For all R>0, we
approximate the vector fields o, by some C} vector fields o X such that

ai(y)=0 if |yll=2R

a:(y) it [[yll<R.

Q

iy

=
Il

Let X“® be solution to the Stratonovich stochastic differential equation,

XSR_X_}_EZJ‘ R(XsR)dBt

i=1

+ Zj (X5R) dB’+j Go( X5 R) d.
Jj=1
As long as X stays in %(0, R), X“®=X%. Moreover, X* and X** are
solutions to stochastic differential equations with bounded coefficients.
Thereby, one can find constants C,, R, >0 such that for R> R, and e <1,

P(sup | X:| = R) < Cyexp(—R*/C,)
‘ (4.22)
[E(Slfp X5 —X:)17) < Cy exp(— R?/C).

The advantage in considering X*® instead of X* is that if ®*% is the
stochastic flow associated to the stochastic differential equation d&%®=
e ak(EeR) dBL, @ Re 9}, since @**(x)=x whenever x ¢ %(0, 2R).

Proof of Proposition 5. The lower bound has already been proved in
[7] and in [ 11] in the general case. So we only give the proof of the upper
bound. Let 4 be a closed subset of E,. Let us fix L>0, and ¢,=L/R,
(where R, is chosen so that (4.22) holds). Then, for e <g,,

P[Xe A]<P[X*"*e A]+ P[sup || X¢| > L/e]
<SP[D(®5#)(B)e A]+ Cyexp(—L*/Cye?)
SE[N®"(A4)] + Cyexp(]—L>/Cye?).

We recall that N is the law of the process D(®), so that 0 < N®(A4)< 1.
Therefore,

P[X?€c ATJ<P[N®"(4)>0]+ Cyexp(—L*/C,ye?).
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Notations are the same as in Corollary 8. The vector fields a7 converge
in € uniformly on compact sets to the vector fields ;. From Theorem 3,
it results then that

lim sup &2 log P[N®"""(4)>0]

&e—0

< —inf{L 4%, F(h)e {§ € FW) n T, N¥(A4)> 0} }.

But F(W) < F(A") (cf. [4]), and the continuity of the map D yields

(pe W) T}, NNA)>0} < {pe F(A"), N(A)>0}

< () F{he #7, N"(4,)> 0}

>0

c () Flhe#",3he #', G(h, h)e A;).

0>0

The last inclusion is given by the support theorem for diffusion, since N
is nothing but the law of the diffusion defined by (4.18).
Let Bs={he#",3he #', G(h, h) € A;}. It remains to show that

=inf {12 0% he () By} <inf {1215, by () FB,T =1

0>0 0>0

This inequality is obvious when I,= +oo. Therefore, we assume that
I,<oo. Let he #” such that I,=1/2|h|?,, and such that ¢=F(h)
Ns=o F(Bs). For all 6>0, let (h°) be a sequence in B, such that ¢ﬁ5
F(h%) > ¢. Let us define the map

M: F(H") > A

: ¢ =F(h)
— the unique / such that {
’ ! 1) =172 k%

It is proved in Appendix 3 that M is continuous, when " is endowed with
the uniform convergence. Therefore, M(¢°) — M(¢)=h. But M(¢°) = ITh°
(where 17 is defined by (3.9)). Moreover, it is easy to check that I7h° € Bj.
Thus he (.o B, and I, <1/2 [h]%. = L. |

Proof of Theorem 7. First of all, it results from the continuity of D and
the contraction principle that A4 is a “good” rate function.

Proof of the upper bound. Let A be a closed subset of L?(W, E.). Let
us fix >0, L>0, ¢,=L/R, (Where R, is chosen so that (4.22) holds). 4"
will denote the subset of L?(W, E.) defined by
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A"={ze L W,E,),3ye4 1y =zl Lo, ) <7}
P(A)=P(X . cA)
SP(X*Hee A") + PO X5 — X, wowiy > 1)
< P(D(®*") e A") +P(E(Sgp 1X5 5= X507) > n")

1
< PD(@) € A7) 4 Elsup | X = X))
t

For e<ey, A 1, L/e=R,. We derive from (4.22) that the second term is
bounded up by C,exp(—L?*C,e?). From Theorem 3, the law of @=L%*
satisfies a large deviations principle with rate function 1. The map D being
continuous, we just have to apply the contraction principle to derive

lim sup &% log P(D(®***)e A7) < —A(A").

e—0

Therefore, VL >0, Vi >0,

lim sup &* log P,(A) < —inf(A(A"), L*/C,).

e—0

Letting L go to infinity, we derive that V7 >0, lim sup,_, ,&*log P,(4) <
—A(A"). A being a good rate function, A(A4") ——=5> A(A4).

Proof of the lower bound. Let A be an open subset of L?(W, E.).
When A(A)= +o0, the lower bound is trivial. So we assume that
A(A)< +oo. Let ge A be such that A(g)< +oo. Let L; be such that
A(g)< L,. A being open, we can choose 7> 0 such that %(g, 7)< A. Let
us fix L>./CyL, and ¢,=L/R, (where R,, C, are constants such that
(4.22) holds).

P(A)=P(#(g 1))
= P(X* e B(g,n/2); 1 X5 — X, Loow ) <1/2)
> P(X*" e B(g,n/2)) — PU| X" = X, Loow, 0y = 1/2)

V4

> P(D(®>"*) e B(g,1/2)) E(sup | X5 — X5 7).

KE
By the contraction principle,

lim infe* log P(D(®*"*) € (g, n/2)) = —A(B(g, n/2)) = —A(g)

e—0
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For ¢ <¢,,
E(sup, | X5 5% — X¢[7) < Coe~ L7

P
< Z—p e Lt for sufficiently small e.

From A(g)<L,, it follows that

lim inf¢&® log P,(4) > —A(g)

e—>0

Taking the supremum over 4, we obtain the result. ||

5. LARGE DEVIATIONS IN A NONLINEAR
FILTERING PROBLEM

This section deals with another application of flow decomposition. It
concerns a nonlinear filtering problem that has been first studied by Doss
[6] and then by Rabeherimanana [11]. The problem can be stated as
follows. Let us consider the couple signal-observation (2%, %*) solution to
the system of stochastic differential equations,

t=g z 2 dB' 4 &%6o(X¢) dt + Z “) dw -7

i=1 Jj=1
d%:=T(Z*%)dt+dB, (5.23)
Xi=x;  WYE=0,
where

e B, B o, G, satisfy the same assumptions as in Section 4.

e Iis a sufficiently smooth function from R” to R’.

We want to obtain a large deviations principle for the conditional law of
the signal Z¢ relative to the observation %°. Such a principle has been
obtained in [6, 11] under some nilpotence assumptions for the vector
fields. As in Section 4, we would like to free ourselves of these assumptions
by using flow decomposition, and the large deviations for stochastic flows.

As done in [6, 11], the first step to obtain such a principle is to make
a change of probability, in such a way that the new law of % * is the law
of a Brownian motion independent of B. So we are led to obtain a large
deviations principle for the conditional law of the process X* defined by
(1.1) relative to the Brownian motion B.
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5.1. Large Deviations for the Conditional Law
of X* Relative to B

We begin by decomposing the stochastic differential equation (4.10) (or
(1.1)). Let ¢ be in 9". We associate to ¢ the vector fields

sHe,y)=¢, " %o,(y)  Vie{l,.,r}

1 - 0 —1
sty =9, wad(y) =3 X <5(i'(y)>
SE it (524)
X

We consider then the It6 stochastic differential equation,
dze=e*s(t,z0%) dit+¢ Y, s%(t,z0°) 6B
i=1 (5.25)

s are continuous and locally Lipschitz. Thus, the trajectories of z ¢ may
explode. Nevertheless, (5.25) defines a map from W to the space of
explosive trajectories & (R") (see Azencott [1]),

E(R")={f10,1] > R"U 0, f(0) = x, f continuous:
f(ty)=o00=Vte[ty, 1], f(t)=0}.

When fe &(R"), we define the explosion time of f as

7(f) =inf{s, f(s) = o0}.

We will say that a sequence (f,), in &(R") converges to fe &(R") if and
only if (f,), converges to f uniformly on compact subsets of [0, z(f)[. In
particular, this means that 7( /) <lim inf z( f,,). Similarly as in Section 4, we
define then the map

D: 9" - LYW, 6(R"))
P (w ¢ (7))

(with the convention ¢,(c0) = c0).

Let T%¢, dw) denote the law of the process D(¢)(T%(¢$, dw) is a prob-
ability measure on &,(R")). We will show a large deviations principle for the
family (7%(¢, dw)),. As in Section 3, we begin with the “quasicontinuity” of
the map ew — D(¢)(ew).
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PROPOSITION 10. Given he A" and ¢ € D", we define the process x*(h) as
the solution to the ordinary differential equation

x+j 3 st ) i’ ds. (5.26)

0 =1

Then, Yo € 2", YK compact sets of R", Va>0, VL>0, VR>0, VT e]0,1],
3b, &, such that Ve < e, Yhe #" such that ||h| ,.<a, x*(h)([0, T]) <K,

P sup [|¢(z0%) —d(x!(h)| = R; [eB—h| <b]<e <.
te[0, T]
Proof of Proposition 10. Vn >0, we will denote by K” the set K" = { y e R",
JzeK|y—z| <n}. Let 7€ ]0, 1[ be such that

sup lpLy)=d2)] <R

te[0,1],y,ze KL, |y—z| <n

Then,

P[osup [[§(z0%) = (xP(h)I| = R; |eB—h| <b]

te[0, T]

SPLosup [§(z0°) =@ xP(h)| =R sup |z7°—xP(h)] <]

te[0,T] te[0, T]

+P[ sup |z =x7(h)| =n; lleB—h[ <b]

te[0, 7]

<P[ sup H¢t(y)_¢t(z)” >R]
1e[0,1]
y,zeK1
ly—zl<n

+P[ sup |lz0°=x{(W)| =n; [leB—h| <b]
te[0, T]

=P[ sup |z{*=x¥h)| =n; lleB—h| <b].

te[0, 7]

So we are led to show that VK compact subsets of R", VT €10, 1], Va,
L >0, VR>0, tere exists ¢y, b >0 such that Ve <¢, and Yhe #", |h|| ,.<a,
x?(h)([0, T]) =K,

& . —L/e?
P[ sup [0 —x¥h)| = R; |leB—h| <b]<e “

te[0, 7]

Case h=0. We will need the following lemma, which states the
quasicontinuity in the case #=0.
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LeEMMA 11. Given ¢: [0, 1] xR"— R" in €%, we define the processes
2% and x° as the solutions (in &(R")) to the equations

t t
z“f*“’:x—}-j (s, z‘f"’)ds—kezj sh(s, 20 %) ds + ¢ Z j s?(s, 29%) OB
0 0
t
)Ef’zx—kf c(s, x?) ds.
0
Then, Npe 2", VL, R>0, YT e 10, 1], YK compact subset of R" such that

([0, T]) = K, 3b, &, such that Ve <e,,

— N — . 2
P[ sup [z0°—x0 (= R; [eB|| <b]<e M.
te[0,T]

Proof of Lemma 11. Let 0% be the stopping time,
0% =inf{s such that |z%“—x?| > R}.
When 1< 0% A T, z9-“e K® Therefore 7(z% %) > 0% A T P-a.e. Furthermore,

P[ sup 20" =57 > R; [eB] <b]

te[0, T]

=P[ sup |z —%?| =R [eBl <b].

<O AT
For all t<0% A T,
:
Izt <[ lets. 20—l D ds e [ Isflsn 22 ds
:

Y | stz 08!

i=1

+é

< sup
t,yeKR

Z J s%(s, 2%) 5B

i=1

dc L
() jo 2o =2 ds+a> sup si( )

a l,yeKR

By Gronwall’s lemma, we obtain that for some constant C (depending on
K and R),

sup [z —x?| < C<82+ sup

ISOE/\T IS(?;}/\T

Z f s¥(s, 2%) OB’

i=1
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Therefore,

P[ sup [Z7°=%7]|=R; eBll<b]

t<ORAT
-

ey fts?(s, z%%) 6B’

i=1"0

R
P|:82C>2:| +P{ sup

té(}‘,}A T

R
>—: |leB||<b|.
s loBl <b)

The first term vanishes when ¢ < (R/2C)"2. Thus, we are led to show that
VL, R, R' >0, 3b, ¢, such that

Z J s?(s, 2%%) OB’

8<802P{ sup
i=1

I<0;A T

> R'; B <b} <ot

For all integer n, we define
o ty=kn (k=0,..,n).
o 9L y) =91, y) VyeR", Vie[t; 1 [
o ZPmi=z0 Ve[t b [

Let . be a compact set in R” such that {¢(z,y); t€[0,1], ye KX} =« #:

2 Y [stts.209 08,

i=1

P{ sup

ISOI;?AT

>R'; |leB| Sb} <P, +P,+ P,

with

o Py=PLsup,<pp 720" =20 + 19" = bl zor o) > 7]

* Pz—P[SuP,<(; ATHZq&n‘g _¢£‘|+‘|¢n_(€“(g<kl(y)<% _
Supr<(fRATH3 iy Jo (ss, 200) —s(s, 209)) 0B = R'J2]

o Ps=P[sup,_y . rlle S s (s, 2 m2) 6BL = R'J2; ||leB|| < b].

Treatment of P,. eX/_, [4" %" T (s%(s, 2%%) —s?"(s, 2" %)) OB is a
martingale with quadratic variation

2 [A(]R/\T ¢,s p" =b, n, e Zd
Z Is?(s, 209) —s7"(s, 20" ) || dis
i=1
<C82( sup (205 —=z2 "+ (19" =l o1 )
_\'SH;AT
<C82y2

12702,,2 _ 2 .
Therefore, P, < Cie” @R/ <Le 1" for y and ¢ sufficiently small.
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Treatment of P,.

"=l srms sup Y (Hal“lf’m— L)
4L0e[0,1] qeNn ox Ox
lt—t|<1/m |x|<1

ye?

Sl 1 P
b n-Ste))

+ ox™

Thus, the continuity in (z, y) of the functions ¢,(y), ¢, '(»), (9¢,/0x)(y),
((0¢,/0x)(y)) ", shows that [|¢" — | 701 &), — ,HOCO Once 7y is fixed, it is
possible to choose n; such that for n>n,, ||¢” ¢\|(ﬁu‘1($)<y/2. Thus, for
nzng,

=p, n, e =, & 4
PlsP{ e |>2].

(<SOR AT

Now, Ve<1,

t t
sup |z4mf—z9%| = sup f (s, 27%) ds—i—f e2s(s, 27 %) ds
t<OR AT kitelt, tii[ tk
ISH%AT

+Zj (s, 2" %) e OB

i=1"1k

1
< sup (fle(z, y)l+ HS%S(Z,J/)H);

l,yeKR
r t
+  sup Y f s%(s, 27 %) e OB
kitelti, tkw1[ li=1 "1k
téﬁ’,}/\T

So,

P[ sup 2% — ¢’8|>ﬂ

<Oy AT

<P[ sup (et )] + 1582, 1)) - >y/4}

t,yeKkR

t r
S s¥(s, 20) ¢ OB

Tki=1

7
2]

n—1
+ > P{ sup
k=0 teltp, tis1l
ts()%/\T
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The first term of the summation vanishes for sufficiently large n (n>=n,).
Furthermore, the quadratic variation of i eX’_,s/(s,z°) 0B, is
bounded up by Ce?/n. Therefore for n > sup(n,, n,)

_ 2
P1<C] — Cay2nje? %e L/e

for large n and small ¢.

Treatment of Ps. For se[t,,t, [, s¥'(s, 20" =s(ty, 20:%). This
yields that Vi < 0% A T,

n—1 r

& Z z (tA> )(Blt/\zk“ Blt/\tk)

k=0 i=1

r

Jle Y s9(s, z07°) 6B | =
0

i=1

< sup [sf(np)Il Y leB),, —eBi, |

it,ye KR ik

< Chn.

Therefore, Py < P(Chn>= R'/2) =0 for b sufficiently small. And the proof
of Lemma 11 is complete. ||

We return now to the proof of Proposition 10, that is, to the case & #0.
Case h#0. Given he #”", |h| . <a, x*(h)([0, T]) = K, we define

o the process Wi=B,—h,je

o the probability P? on W by

dp?
dP

_exp[ f(hy,éB j 1A |12 ds}

a(Bs,s<t)

o A={sup,. |z} “(eB)—x{(h)| =R} n{||eB—h| <b}.
B={[}(h,,0B,) < —i/e}.

Then, P(A)<P(B)+ E°[(dP/dP*)1,1,]. Since (3(h,, 0B,) is gaussian
with mean 0 and variance |43, .,

¢ |hll < 22 > 1 ( L>
P(B) < exp| —=——— |<zexp( —=
PN R TE P72

for large A and small &:

dp A a
<
E[dP*ﬂ ﬂg} exp< >exp<28>

x P[sup ||zf*—x{(h)| = R; [eW*|| <b]

t<T
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with

dzte=esi(t, 200 de+ Y st 20 hidt+e Y st 280 oWt
i=1 i=1

dxihy= Y 501, x40h)) ki de.

i=1

Under P°, W* is a standard Brownian motion. Applying Lemma 11
with ¢(t, y) = 3/_, s%(t, y) h', we obtain an exponential bound for
E°[(dP/dP*) 1 ;1 .], and the proof of Proposition 10 follows. ||

From Proposition 10, we derive as usually a large deviations principle
for the family (7T%(¢, dw)),.
PRrROPOSITION 12. For ¢ fixed in 2", we define the rate function L, on
&(R") by
Vze &(R"), L,(z)=inf{}||h]|13,,, he A" such that z = ¢ (x?(h))},
where x%(h) is solution to (5.26). Then we have
o L, is a “good” rate function.

. VACE(RY),

—L,(A) <liminfe? log T%(¢, A) <& lim sup &> log T*(¢, A) < —L(A4).

e—0 e—0

Moreover, if 1(z%¢) > 1, P-a.e., and if Vhe #", 1(x*(h)) > 1, the result remains
true when the topological space &(R") is replaced by the topological space E...

Proof of Proposition 12. It results as usual from the quasicontinuity and
the continuity of the map he #" > ¢(x%(h)) e &(R"). |}

We derive from Proposition 12 a large deviations principle for a particular
version of the conditional law of X* relative to B. As in Section 4, we define:

Ft'— 9"

Ji— flow of diffeomorphisms associated to the (5.27)
ordinary differential equation

l .
dx,=6o(x,)dt+ ), &;(x,) h].
j=1
According to the results of Bismut [4], F can be extended in a measurable
way to W. This extension will still be denoted by F. We define then for
P-almost all @:
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o the probability N%(&, dw) = T*(F(®), dw);
o YVhe #', E(h)(®) = F(@)(x"(h));

o the rate function /; = L.

@]

We have then the following result.

PROPOSITION 13. 1. Vhe #", E,(h) is a solution to

dz, x+zf (E(h) R ds+j Go(E(h)) ds

4

+Y 6,E(h)dB
j=1
and 1,(z) =inf{1/2 |h|>,., he #' such that, z=Eh)}. P-ae., I, is a good
rate funcnon

2. NY&, dw) is a probability measure on E ., which is a version of the
conditional law of X? relative to B. P-a.e. VA E :

—1,(A) <lim inf £? log N¥(&, A) <lim sup &> log N¥(&, A) < —1,(A).

e—0 e—>0

Proof of Proposition 13. Point 1 is a consequence of Theorem 2 and of the
definition of /,. We derive also from Theorem 2 that P((z"®4(w)) > 1) =1
and P-a.e. X4w, @)= D(F(®))(w). Therefore, N*(c, dw) is version of the
law of X* relative to B. Large deviation inequalities are the same as in
Proposition 12. |1

5.2. Application to Nonlinear Filtering

We consider now the original problem, that is, large deviations for the
conditional law of Z'¢ relative to % ¢, where (%%, %) is a solution to (5.23).
To begin with, we introduce some notations:

e An element y of R"*! will be decomposed into (y,,y,), where
y,eR"and y,eR.

o We define the following vector fields in R” *': Vye R,

— Vie{l, . r}, 2(y)= <Gi(()yl)>;
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Go(11)
1 L jor; .
_5]';] <ax (yl)’ /(yl)>

——A&(y)zli§%<alea,xxy>>.

e A flow ¢ of diffeomorphisms in R” "' transports these vector fields
into

§Ut,y)=¢; "% 2i(y), i=1,..,r,

1—1
0%,
ox?

X

muw)um}

e For all e 2" "', we will denote by 2%¢ the process in & (R"*")
solution to

dzte=e250(1, 20 %) dt +¢ Y, 891, 29-) 6B

i=1

292 =(x,0).
e We map then 2"*! to LYW, &(R" ")) by
B 9"t LYW, 6, (R )

p (0 (20 4(w))).

« The processes €50 € &(R") and €] € £(R') are defined by
D(§)=(€4], 65
o Finally, we will denote by F the “flow” map
F:W—g"*!

@ +— stochastic flow associated to the stochastic differential

equation d&, = 7,(¢,) dt + Z 2;(E,) dB.

Jj=1

We then have then the following result.
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THEOREM 14. 1. VA e B(6(R")), we define

e, F(o & F(o e, F(o
M“((b,A)EE[ﬂA((g(lf( )) exp((g(zf(l )_7§0 HF (g(l)(s ))szs)]

ELexp(% 51 — 3 {6 I7(€5 1)1 ds)]

M@, ) is a probability measure on E., which is a version of the condi-
tional law of X'° relative to %°.

2. P-ae,VAcCE,,

—1(A) <lim inf &2 log M¥(&, A) <lim sup &> log M¥(&, A) < —14(A)

£—0 e—>0
with 1 as in Proposition 13.

Proof of Proposition 14. Ye>0, we define a new probability P° on
W® W by

dpe
d[p a(By, Es»S<I)

—exp | ~[ (0B, 3 [ i

r 1
—exp | - [ i ovse3 [ Iran P

Under P°, %° has the law of a Brownian motion independent of B.
Therefore, (2%, #*) has the same law under P* as (X* B) under P. Let G
and H be two measurable functions respectively defined on E, and Ej:

. dP
E(G(2) () = £ () v 5 )

—F { G(X°) H(B) exp <fl (x%) oB

5[ raops))|

We deduce then that P-a.c.

ELG(X") exp(fo I'(X7) OB, — 3§ IT(X?)|* ds)| 5]
ELexp(fo I'(X%) 0B, — 3 fo I T(X9)? ds) 5]

The process &%= (X%, [, I'(X?)B,) satisfies the stochastic differential
equation

[E(G(%,S)W i) =

A7 = Y 7(9%) dBi+ Z Y dB]+7(7%) dt

i=1 Jj=1

P =(x,0).
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Thus, the decomposition of stochastic diffential equations yields
« Pae, 1(27(w))> 1.
o Pae, °=D(F(®))w).
By independence of B and B, it results that P-ae., V4 e B(E,),
B (1) o) = ELLAEGT ) expl @10 — 5[5 | T(6 1)1 )]
ELexp(6 () 7 =3 [o IT(€ 67517 ds) ]

=M@, A)
This proves 1.

Proof of the lower bound. let A be an open set of E.. When
[;(A) = + oo, the lower bound is trivial, let us suppose that /;(A4) < + co.
Let he #" be such that

z=F(®)(xF(h))e 4 (where x?(h) is defined by (5.26))
3 1Al =15(2) = 15(A).
let us introduce

o the random variable,

o 1 o
U =exp (%{(r) —t o ds> (5.28)

o the process Wi¢=B,—h,/e
o the probability measure P on W,

dp?®
dP

e .
—exp LL (hyr 0W5) 55 | |h5|2ds]

g(Bg, s<t)
Then, M(&, A) = E(ﬂA(%f’l)ﬁ‘d’)) U9)/E(U*). By Girsanov’s transformation,
E(1(€57 ) U?)

& e, F(& & dP
=F <1]A((g(’lf( )) U dP'S>

. B e . |
_ &, F(®) & _ _ 2
— (1,00 Texp (¢ [ GheoB — 5 [ 17 as ) )
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where

— G5 w) = D(¢) <‘“ +ZI>

1
— 0" =exp <(€fz>”f‘” S| @t

2
ds>.
E( (€47 ) U= EN (G5 ) U1y, sm,< )

X exXp <— “i;“) exp <—I:>

Now, using well-known results about the asymptotic behavior of perturbed
dynamic systems, P-a.e, ¢*? ——> ¢(z%) in &(R"), where z* is a solution
to the ordinary differential equation,

Therefore,

z‘f—<0>+z j §9(s, z%) hi ds.

i=1

Thus, P-ae., U* — U°, with U°>0 and independent of B.
Moreover, it is eas11y seen from definition of F that

Vie[0, 1], Y(x,, x,)e R+ F(o)(x,, Xz)=< F(a)(x)) )>

X, +G(x,,d

for some function G and F defined by (5.27). This yields that

o Vie{l,..,r},
S{:(d))(t)xl)
(@) _
8§01, Xy, x,) = _aG, Fo)(t x,)
ox, ' ’

o V1[0, 1], 1@ =xT@)(p),

Therefore, 4 57® — F(@)(xT®(h)) = z. By Fatou’s lemma, we deduce then
that

lim inf (1G5 ) U053 om, < 1) = E(14(2) U1 o, <)
L,
OPG hséBs<K>
0

> 02
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for sufficiently large K. It results then that

lim infe? log E(1 (% 51@) U*) > —15(A).

e—>0

Now, &*log M*(®, A) =¢*log E(ﬂA((gf’lf“f’)) U?) —¢&?log E(U?). The lower
bound follows then from the fact that P-a.e. Vp > 1, sup, ., E((U®)?) < o0,

which is proved in Appendix 4.

Proof of the upper bound. Let A be a closed subset of E,.. Using
Holder’s inequality, Vp > 1,

1 o 1
&2 log M*(®, A) <; & log E(1,(€57'™) +§82 log E((U?)?)
—&?log E(U?)

(with 1/p+1/g=1).
£, I:‘(rf)):F'

The particular form of (&) implies that %] (@)(zF @), where
z%¢ is defined by (5.25). Since P-a.e. Vp > 1, sup, -, E((U?)?) < o0, we have

1 - o
lim sup &? log M*(&, A) <~ lim sup &% log P(F(&)(z"® %) e A)

e—0 e—>0

1
< ——15(A4) by Proposition 13.
p

Letting p decrease to 1, we obtain the result. |

APPENDIX 1

Let F and G be two functions in ¢7'(R", R). Let £2 be a bounded domain
in R". Let ¢, y: @ — R" be in W™ *(2). We assume that there is a constant
R >0 such that

H(M wn 2(9)<R

HWH wms 2(9)<R-
Then, if m>n+1,

1. Fode W™*Q), and there is a constant C >0 such that

sup 1Foll ym 2o < C

¢, Il w22 <R

2. When FG (g;;nﬂ»l, HFO¢_FOl//H Wm.Z(Q) S C H¢_¢H wm2(Q).
3. ”F°¢_GO¢H Wm,z(Q)<C HF_G”({;};"
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Proof. YaeN", |a| <m,

DX(Fo¢)(x)= 3, DIF($(x)) Pyx),
et
181 < o

where Pj is a polynomial in the derivatives of ¢, whose each monomials
!_, D7i¢(x) satisfies Y/ _, 7,=o. Therefore,

| IDFeg) 0P dx<C Y sup DRI | 1Px)1 dx.
? <l ?

Thus, we have to control terms such as [, [T, [ID7'¢(x)|>dx with
>, v;=a. When |y,|<m—[n/2]—1, the Sobolev embedding theorem
ensures that

sup [|D7'¢(x)[| < Cllpll ym >0y < CR.

But there is at most one term with |y,| >m —[n/2] —1. Indeed, if |y, | >
m—{[n/2],

n n
J=la| =y, |<|=|<m—=]=| =1,
T 1=l = M m M

since m > n + 1. Therefore,

/

| TT 1D7g(x) 12 dx < TT sup [D79(x)17 | 1D70g(x)] dx

Q=1 i#ig X Q

S CR ™ (1§ 3m 20y < CRP.

This proves 1. 2 and 3 are obtained in a similar way:
J, 1D7(F = g)x) = D(F o) ()] d

<C ) sup|DFF(x)|? LZ 1P 4(x) — Q)] * dx
peN” X
1Bl <«

+C ) sup I\DﬁF(d)(X))—D”F(!P(X))\IZfg 104(x)]? dx.

1Bl <«
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Oy is the same polynomial as P, for the derivatives of . Since F is in
(€N7+l
b )

sup | D'F(¢(x)) — DPF(ip(x))|I> < Csup [ d(x) — ()]

<C H¢_‘IJH%V’"-Z(.Q)'

We obtain an upper bound (depending on R) to fg I\Qﬁ(x)H2 (x) dx as pre-
viously. To control jQ HP,;(x)—Q/;(x)szx, we have to bound up terms
such as

l,

! 4

[T D7¢(x)— T D"(x)

i=1 i=1

S Cé:l L?

2

dx

[T D7§(x)(D"'d(x) = D"(x)) [] D"(x) | dx.

Jj<i Jj>i

The same argument as for 1 implies 2. Finally,
[, 1D°(F=g)x) = DG ) ()| d

<C Y | IDPF@(x)) = DFG(9(x))) Pylx)|? dx
penn 2
[B <«

<CIF=GIZy ¥ [ IP0)IPdx. 1
\£IE<NJ\"\ °

APPENDIX 2

Let H be a Hilbert space, and let (e,), be an orthonormal basis of H.
Let (2, o7, (#,),c10.17- ) be a probability space. Let M, be a %, -adapted
process with value in H.

We assume that for all n, M7 =(M,, e,) is a real #-martingale and that
there exists constants K, L >0 such that YNe N* Ve [0, 1],

N
Y (M, <K  Pae.
k=1

N t
S [ MEMlacmt M <L Pae,
0

k,1=1



FLOW DECOMPOSITION 63

Then, VR such that R>> K,

Pl sup |M,|H>R]<exp[—
1e[0,1]

(RZ—K)T
8L '

Proof. Let V,y=Span(e,, .. ey), and let P, denote the orthogonal
projection on V:

P[ sup |PyM,|y=>R]=P[ sup [PyM,|3>R]

te[0,1] te[0,1]
N
<P{ sup <z (Mf)2—<M">,>>R2—K};
te[0,1] \k=1
N (M*)?—(M*>, is a real martingale, whose quadratique variation is
2i—1 (M, ‘ g q q
4 Z jM’»M d{M*, M <AL.

k,1=1
As a result:

(RZ—KV}

P[ sup [Py(M)|z= R]<exp{ 8L

te[0,1]

Letting N go to infinity, Beppo Levi’s lemma yields the result. ||

APPENDIX 3

The map
F(H") > "
=F(h)
¢)=1/2 A,
is continuous, when #" is endowed with the uniform convergence.

Proof. Let (¢") and ¢ be such that_qﬁ"—»(go’kq& Let h"= M(¢") and
h= M(¢). By Theorem 3, dt-a.e. i’ and h,e V*. Moreover,

¢ — the unique /4 such that {¢ I

$103) = 4,0 = [ (o810 = 0(9,(x)) i, d

+ jo’ o)) — 1) ds.
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Using the properties of o, we derive that for all K compact subset of R”,

sup
t,xeK

[| atorconiz =i, ds

Now let us note that V=), _pKerao(x)=),.;Kera(x), where [ is a
finite set. Let K, be a compact set of R” such that / < K,. The convergence
of ¢, to ¢ yields

sup [[(¢5) " (x)| = sup [(4)7" (¥)].

s, xe Ky s, xe Ky
Thus, there is a compact set K of R” such that
{(¢") " '(x),x€K,y,5€[0,1],neN} =K.

Now, sup, .c; IIfy o(x)(hY — h,) ds|| < sup, .cx [} o($2(x))(RY — h,) ds].
Using (5.29), we obtain that

sup [la(x)(h} =h,)| = 0.

t,xel
Let I={x,,.,x,}, 0,=0(x;), V;=Kerg,, and P; be the orthogonal
projection on Vi:

sup [a;(hy —h,)|l =sup [lo,(P.(h]—h,))]

L
> din((0]7)* 0] 7) 2 sup | P;(h} —h,)|,
t

1
where

o for all matrix S symmetric and positive, 4,,;,(S) is the lowest eigen-
value of S.
e o/ V> Im(,)
y—o(p).

By definition, ()'l.Vfl is invertible; thus /‘me((gi’/f)* o'ini) > 0. Therefore, Vie
{1, ...n}, sup, |P,(h!—h,)| —0. But, i/ —h,eV-=(NV,)" =X V; and
we obtain that sup, |7 —h,| —0. |

APPENDIX 4

Let U* be defined in Section 5 by (5.28). ThenVp, P-a.e.sup, -, E[(U?)?] < 0.
Proof. We will in fact show that E[sup,_, E[(U?)”]] < oo:
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E[sup E[(U*)”]] < E[sup(U*)"]

e<l1 e<l

! & D P ! e\ 2
<E {sup exp <p L I(x2) 68,2 L Ir(xe)| dsﬂ

e<l1

<E {sup exp <p jl r(xe) 5§S>] )

e<l1

Let
X
Mi=p [y (X% 6B, Vi=| M:
&
is a solution to

dve=2,V?) dBi+ 1(V®) dBl+ iy V*) dt

X
Ve=|0
&
where
X e, (x) X G;(x)
Al m | = 0 , Al m |=| pl(x) |,
& 0 & 0
x Go(x)
do| m | = 1/2%,I')(x) I';(x)
e 0

Thus all these vector fields are 7’ on R”x R* x [0, 1]. Therefore, there is
a version of V* which is continuously differentiable in (x, ¢). Moreover,
0V*?/0¢ is a solution to the variational equation

aV‘; _ ’ & ﬁ i r & av
d< E» >—Zi:/1,-(V,) % dB,~I—§:Xj(Vt) %

4B

&

+40(V%) v dt
Oe

vy
de

- o O
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Therefore,

! oM?
Esup exp(M3)] <E | [ exp(a)
0

e<1 68

ds} + E(exp(M?))

1 e\ 2712
</ [E[exp(zM;:)]l/Z[EK(M> ] de + E(exp(M?)).
0 Oe

e Since (M*),=p> |} |I(X%)|*ds is bounded by some constant K,
for all e<1, E[exp(2M?)] <exp(2K).

IR
oe[sf (25
cef ][]

Applying 1td formula, it is easy to check that there is a constant C such
that Ve < 1.
2
ds}

e[ [2x:
Oe

xX:
0(X?) +e0;(X5) ——=

Oe
2
+C[E{ ds}

sc(+] [X”} ')

Another application of the Gronwall lemma completes the proof. |

2} <C+C[E[ZL’

i

XE
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