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We study large deviations properties related to the behavior, as = goes to 0, of
diffusion processes generated by =2L1+L2 , where L1 and L2 are two second-order
differential operators, extending recent results of Doss and Stroock and
Rabeherimanana. The main tool is the decomposition theorem for flows of
stochastic differential equations proved by Bismut and Kunita. We give another
application of flow decomposition in a nonlinear filtering problem. � 1996 Academic

Press, Inc.

1. INTRODUCTION

The purpose of this work is to show how the decomposition theorem for
flows of stochastic differential equations proved by Bismut [4] and Kunita
[9] can be used to obtain new large deviation principles for the diffusions
generated by =2L1+L2 , when L1 and L2 are two second-order differential
operators, and when = � 0. This problem is now classical when L2 is first
order (see Freidlin and Wentzell [8], Azencott [1]). It has also been
treated when L2 is the Laplacian (Bezuidenhout [3]) and when L1 can be
written as a sum of squares of vector fields L1= 1

2 �i X 2
i , where the Lie

algebra generated by the Xi is abelian (Doss and Stroock [7]), or nilpotent
(Rabeherimanana [11]). These authors give a large deviations principle for
the law of the random variable R=, particular version of the conditional law
of X= relative to (=B), where X= is a solution to the Stratonovich stochastic
differential equation

X =
t=x+= :

r

i=1
|

t

0
_i (X =

s) dBi
s+ :

l

j=1

_~ j (X =
s) dB� j

s+|
t

0
_~ 0(X =

s) ds: (1.1)

v x # Rn;

v t # [0, 1];

v For all i # [1, ..., r] and all j # [0, ..., l], _i and _~ j are sufficiently
smooth vector fields on Rn.
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v B and B� are two independent Brownian motions, with values in Rr

and Rl, respectively, defined on the Wiener spaces W=C0([0, 1], Rr) and
W� =C0([0, 1], Rl). We will denote by P (respectively P� ) the Wiener
measure on W (respectively W� ).

One could wonder whether a large deviations principle for the law of X=

is attainable. As a matter of fact, it is not, as Doss and Stroock have
pointed out. Indeed, the support of the law of the nonperturbed diffusion
X 0 is not compact, in general. Since the rate function * associated to the
large deviations of X= vanishes on the support of P0, the level sets [*�L]
cannot be compact. However, X= can be considered as a random variable,

X= :
(W, P)
(=B)

� (L p(W� , Cx([0, 1], Rn))
� (B� � X.

=(x)).

In this case, there is no obvious contradiction to have a large deviations
principle for the law P= of X= . The support of P0 is now a point of
Lp(W� , Cx([0, 1], Rn)), which is obviously compact. And we do obtain a
large deviations principle for the law of X= .

Our result contains the results of [7, 11] and extends them to the
general case with no hypothesis at all on the Lie algebra. The key observa-
tion is the fact that a contraction principle can be used if one has two
ingredients

1. the decomposition principle: we recall this result in Section 2.

2. a large deviations principle for flows of stochastic differential equa-
tions.

Such a large deviations principle for flows has been obtained by Millet,
Nualart, and Sanz-Sole� [10] and Baldi and Sanz-Sole� [2]. We need a
slight extension of it to be able to control derivatives of the flow. We give
the proof of this large deviations principle in Section 3, and we get in
Section 4 to the main theorem that we now state.

Theorem 7. Let P= be the law of the random variable X= (P= is a prob-
ability measure on L p(W� , Cx([0, 1], Rn))). Then P= satisfies a large devia-
tions principle with rate function 4 defined for all z # L p(W� , Ex) by

4(z)=inf { 1
2 &h&2

Hr , h # Hr, such that P� a.e.,

zt=x+ :
r

i=1
|

t

0
_i (zs) h4 i

s ds+ :
l

j=1

_~ j (zs) dB� j
s+|

t

0
_~ 0(zs) ds= .
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This contains a large deviations principle for the conditional law R= of
X= relative to (=B) (as in Doss and Stroock [7] and in Rabeherimanana
[11]), as a trivial contraction principle shows.

Finally in Section 5, we show how this method can be used for a
problem in nonlinear filtering, extending earlier results of Doss [6] and
Rabeherimanana [11].

2. FLOW DECOMPOSITION FOR STOCHASTIC
DIFFERENTIAL EQUATIONS

We mention here the results of [4, 9] for later use. For i # [0, ..., k], let
Xi and Yi be Cm

b vector fields on Rn (that is differentiable up to order m,
bounded with bounded derivatives). Let us consider the Stratonovich
differential equation

dxt= :
k

i=1

Xi (xt) dBi
t+X0(xt) dt

x0=x.

Then there is a version of (t, x) [ xt(x), which is a flow of Cm-diffeo-
morphisms in Rn, that is an element of Dn, where

Dn#{
,: [0, 1]_Rn � Rn, (t, x) [ ,t(x) such that

=\t # [0, 1], ,t is a Cm
-diffeomorphism of Rn

\l # Nn, |l |�m,
� |l |,t

�xl (x),
�|l |(,t)

&1

�xl (x) are continuous in (t, x).

Let ,t(x) denote this essentially unique version of xt(x). Almost surely, for
all t # [0, 1], we can then define the stochastic vector fields

,&1
t V Yi ( y)=\�,t

�x
( y)+

&1

Yi (,t( y)).

Let us consider then the Stratonovich differential equation

dyt= :
k

i=1

,&1
t V Yi ( yt) dBi

t+,&1
t V Y0( yt) dt

(2.2)
y0= y.

25FLOW DECOMPOSITION
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Theorem 1. 1. There is a strong solution to (2.2) defined on [0, 1].

2. Let zt#,t( yt( y)). Then zt is solution to the stochastic differential
equation

dzt= :
k

i=1

(Xi+Yi)(zt) dBi
t+(X0+Y0)(zt) dt

(2.3)
z0= y.

Proof. Let !t be the strong solution of Eq. (2.3). Let us consider the
process defined for all t # [0, 1] by y~ t=,&1

t (!t). Then, by the generalized
Itô formula (see Theorem 4.1 in [4]), y~ t is solution to Eq. (2.2). Therefore
1 and 2 are proved. K

Theorem 1 has its Itô counterpart.

Theorem 2. Let us define

v

v

v

(X0+Y0)* (x)#X0(x)+Y0(x)+
1
2

:
k

i=1

(Xi+Yi)$ (x)(Xi+Yi)(x).

Y0*(x)=Y0(x)+
1
2

:
k

i=1

Yi$(x) Yi (x).

Y� 0(x)=Y 0*(x)+
1
2

:
k

i=1

,&1
t V [Xi , Yi](x)

&
1
2

:
k

i=1

�2,t

�x2 (,&1
t V Yi (x), ,&1

t V Yi (x)),

where [X, Y] is the Lie bracket of the vector fields X and Y.
Let us consider the Itô stochastic differential equation

dyt= :
k

i=1

,&1
t V Yi ( yt) $Bi

t+,&1
t V Y� 0( yt) dt

(2.4)
y0= y.

Then

1. There is a strong solution to (2.4) defined on [0, 1].

2. Let zt=,t( yt). Then zt is solution to the Itô stochastic differential
equation

$zt= :
k

i=1

(Xi+Yi)(zt) $Bi
t+(X0+Y0)* (zt) dt.

Proof. The same as Theorem 1. K
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We will use here Theorem 2 in the following context:

v k=l+r;

v B=(B1, ..., Br, B� 1, ..., B� l );

v \i # [1, ..., r], Yi=0;

v \i # [r+1, ..., l+r], Xi=0,

so that Eq. (1.1) splits in two stochastic differential equations, one driven
by the Brownian B, the other by the Brownian B� .

3. LARGE DEVIATIONS FOR STOCHASTIC FLOWS

3.1. Notations and Result

In this section, we will consider the Stratonovich differential equation,

d!=
t== :

r

i=1

_i (=, !=
t) dBi

t

(3.5)
!=

0=x,

where

v _i (=, } ) are Cm+2
b vector fields on Rn, for some m�n+1. We will

assume that _i (=, } ) converges in Cm
b uniformly on compact subsets of Rn

to some vector field _i , when = goes to 0.

v B is a standard Brownian motion defined on the Wiener space
(W, P), where W is the space C0([0, 1], Rn), with the topology of uniform
convergence, and P is the Wiener measure.

Let Dn be defined as in Section 2. Dn will be endowed with the C0,k, or
C� 0, k-topology, defined for all k�m by

v ,n w�C0,k
, iff \K compact subset of Rn,

sup

|:| �k
x # K; t # [0, 1] "

�|:|,t

�x: (x)&
�|:|,n

t

�x: (x)" ww�
n � �

0

v ,n w�C� 0,k
, iff \K compact subset of Rn,

sup

|:| �k
x # K; t # [0, 1] "

�|:|,t

�x: (x)&
�|:|,n

t

�x: (x)"

+"�|:|(,t)
&1

�x: (x)&
�|:|(,n

t )&1

�x: (x)" ww�
n � �

0.
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Let 8=
t(x) be the version of !=

t(x) which is an element of Dn. Our purpose
is to show a large deviations principle for the law of 8= (probability on Dn

with the C� 0, k-topology). Millet, Nualart, and Sanz-Sole� [10], Baldi and
Sanz-Sole� [2] have already shown this result for the C0, 0 topology. Before
stating the result, we will introduce further notations.

Let Hr be the Cameron�Martin space over Rr

Hr={
h: [0, 1] � Rr, h(0)=0, h absolutely continuous with respect to

=Lebesgue measure, such that |
1

0
&h4 t&

2 dt<�.

Hr is a Hilbert space for the inner product (h, g)Hr=�1
0 h4 t g* t dt. Given

h # Hr, we associate to (3.5) the ordinary differential equation

dxt(h)= :
r

i=1

_i (xt(h) h4 i
t dt

(3.6)
x0(h)=x.

Under the assumptions made on the vector fields, x(h) is an element of Dn.
Thus, we define a map

F: Hr � Dn

(3.7)
h [ (t, x [ xt(h)(x)).

Using the results of Bismut [4], F can be extended in a measurable way to
W: P-a.e. Ft(|)(x) will be a solution to the stochastic differential equation

d!t= :
r

i=1

_i (!t) dBi
t

$0=x,

This extension will still be denoted by F.
We define now the rate function associated to the large deviations of the

stochastic flow 8=. Let , be in Dn.

I(,)#inf[ 1
2 &h&2

Hr , h # Hr, F(h)=,]. (3.8)

When A is a subset of Dn, we will denote by I(A)=inf[I(,), , # A]. We
have then the following result.

Theorem 3. Dn is provided with the C0, k-topology, for some k�m&1&
[n�2]. Then

1. I is lower semi-continuous, and for all L>0, [I�L] is a compact
subset of Dn.
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2. For all , # Dn such that I(,)<�, there exists a unique h # Hr such
that ,=F(h) and I(,)= 1

2 &h&2
Hr . Moreover, if _(x)=(_1(x) } } } _r(x)) and if

V#�x # Rn Ker _(x), then dt-a.e., h4 t # V=.

3. \A/Dn,

&I(A1 )�lim inf
= � 0

=2 log P(8= # A)�lim sup
= � 0

=2 log P(8= # A)�&I(A� ).

These results remain true when Dn is provided with the C� 0, k-topology.

3.2. Proof of Theorem 3

Large Deviations for the C0, k-topology

First of all, let us note that the map F defined by (3.7) is continuous
from Hr

a#[h # Hr, &h&Hr�a] endowed with the uniform convergence, to
(Dn, C0, k). Let, indeed, f and g be two functions in Hr

a and let x=F( f )
and y=F( g). Then,

&xt(x)& yt(x)&2�2 "|
t

0
(_(xs)&_( ys)) f4 s ds"

2

+2 "|
t

0
_( ys)( f4 s& g* s) ds"

2

�2Ka2 |
t

0
&xs& ys&

2 ds+2 "|
t

0
_( ys)( f4 s& g* s) ds"

2

.

And an integration by part then yields

&xt& yt&�K &_( yt)( ft& gt)&+|
t

0
&_$( ys) y* s( fs& gs)& ds

+2Ka2 |
t

0
&xs&ys &2ds

�K & f & g&� \1+|
t

0
&_$( ys)& &_( ys) g* s& ds+

+2Ka2 |
t

0
&xs&ys &2ds.

By Gronwall's lemma, we have then:

&xt&yt&�K & f & g&� (1+Ka).

The same arguments hold for the derivatives of x& y.
Therefore, Lemma 1.3 [1, p. 69], ensures that I is a ``good'' rate func-

tion. Moreover, when I(,)<�, the infimum in the definition of I is
reached.
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We are now going to prove that the point where the infinum is reached
is unique. So, let , # Dn be such that I(,)<�. Let h0 # Hr be such that
I(,)= 1

2 &h0&
2
Hr and ,=F(h0). Let us define the map

6: Hr � Hr

(3.9)
h [ 6h: 6ht=|

t

0
PV= h4 s ds,

where PV= is the orthogonal projection on V=. Then it is easy to check that

v &6h&Hr�&h&Hr ;

v &6h&Hr=&h&Hr � dt-a.e., h4 t # V=;

v F(h)=F(6h).

Thus, , = F(h0) = F(6h0) and &h0&Hr = &6h0&Hr . Therefore, dt-a.e.,
h4 0(t) # V=. Let us assume now that

,=F(h0)=F(h1), I(,)=1�2 &h0&
2
Hr=1�2 &h1&

2
Hr .

The equations satisfied by F(h1) and F(h0) yield

\t, \x, _(,t(x)) h4 0(t)=_(,t(x)) h4 1(t).

Using the diffeomorphism property of ,t , we derive that

\t, \x, _(x)(h4 0(t)&h4 1(t))=0.

Therefore, h4 0(t)&h4 1(t) # V. But we already know that h4 0(t)&h4 1(t) # V=.
Therefore, h0=h1 , and 2 is proved.

Following Azencott [1], we begin with the ``quasicontinuity'' of the
map F, in order to obtain 3.

Lemma 4. \K compact subset of Rn, \a>0, \L>0, \R>0, there exists
b0 and =0>0 such that \b�b0 , \=�=0 , \h # Hr, &h&Hr�a,

P[&8=&F(h)&C0, k([0, 1]_K)�R; &=B&h&�b]�exp(&L�=2).

Proof of Lemma 4

Throughout the paper, C is a constant which can differ from one expres-
sion to the other. Since m�k+1+[n�2], Sobolev's embedding theorem
gives & }&Ck(K)�C & }&Wm, 2(K) , where W m, 2 is the space of functions differen-
tiable up to order m, whose derivatives are square integrable with respect
to Lebesgue measure. W m, 2(K) is a Hilbert space for the norm

& f &Wm, 2(K)=|
K

:
|:|�m "

�|:|f
�x: "

2

dx.
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Therefore,

P[&8=&F(h)&C0, k([0, 1]_K)�R; &=B&h&�b]

�P _ sup
t # [0, 1]

&8=
t&Ft(h)&Wm, 2(K)�

R
C

; &=B&h&�b& .

So we have to show that \K compact set of Rn, \a, R, L>0, there exist
b0 , =0>0, such that b�b0 , =�=0 , &h&Hr�a imply

61#P[ sup
t # [0,1]

&8=
t&Ft(h)&W m, 2(K)�R; &=B&h&�b]�exp(&L�=2).

In the following, we will denote

{=
R=inf[t such that &8=

t&Ft(h)&W m, 2(K)�R].

Then, 61=P[supt # [0, 1] &8=
t 7 {=

R
&Ft 7 {=

R
(h)&Wm, 2(K)�R; &=B&h&�b].

Since the vector fields _i are Cm
b , one can easily check that there is a

constant M (depending on a and K), such that

sup
t # [0, 1]

sup
h; &h&Hr�a

&Ft(h)&Wm, 2(K)�M.

From the definition of {=
R , it results then that supt�{=

R
&8=

t&W m, 2(K)�R+M.
Therefore, since m�n+1, it is proved in Appendix 1 that there is a con-
stant C such that \j # [1, ..., r], \=, \t # [0, 1],

&_j (8=
t7 {=

R
)&_j (Ft 7 {=

R
(h))&W m, 2(K)�C &8=

t 7 {=
R
&Ft 7{=

R
(h)&W m, 2(K)

&_j (=, 8=
t 7 {=

R
)&_j (8=

t 7{=
R
)&Wm, 2(K)�C &_j (=, } )&_j ( } )&Cm(BR+M)

(where BR+M is the ball of radius R+M in Rn). Thus, \t # [0, 1],

&8=
t 7 {=

R
&Ft 7 {=

R
(h)&W m, 2(K)

�" :
r

j=1
|

t 7 {=
R

0
_j (=, 8=

s) d(=B j
s&h j

s)"Wm, 2(K)

+ :
r

j=1
|

t 7 {=
R

0
&_j (=, 8=

s)&_j (8=
s)&Wm, 2(K) |h4 j

s | ds

+ :
r

j=1
|

t 7 {=
R

0
&_j (8=

s)&_j (Fs(h))&Wm, 2(K) |h4 j
s | ds
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�" :
r

j=1
|

t 7 {=
R

0
_j (=, 8=

s) d(=B j
s&h j

s )"Wm, 2(K)

+C _a :
r

j=1

&_j (=, } )&_j ( } )&Cm(BR+M)

+|
t 7 {=

R

0
&8=

s&Fs(h)&Wm, 2(K) |h4 j
s | ds& .

It follows from Gronwall's lemma that \t # [0, 1],

sup
t # [0, 1]

&8=
t 7 {=

R
&Ft 7{=

R
(h)&W m, 2(K)

�C \ sup
t # [0, 1] " :

r

j=1
|

t 7{=
R

0
_j (=, 8=

s) d(=B j
s&h j

s)"W m, 2(K)

+ :
r

j=1

&_j (=, } )&_j ( } )&Cm(BR+M)+ .

Therefore,

61�P _sup
t " :

r

j=1
|

t 7{=
R

0
_j (=, 8=

s) d(=B j
s&h j

s )"Wm, 2(K)

�
R
2C

; &=B&h&�b&
+P _ :

r

j=1

&_j (=, } )&_j ( } )&Cm(BR+M)�
R
2C

; &=B&h&�b& .

From the uniform convergence of _i (=, } ) to _i ( } ), we can choose =0 such
that

=�=0 O &_j (=, } )&_j ( } )&Cm(BR+M)<R�2C.

Thus we are led to show that \K compact of Rn, \R, R$, L, a>0, there
exists b0 and =0 such that b�b0 , =�=0 , &h&Hr�a imply

62#P _sup
t " :

r

j=1
|

t 7{=
R

0
_j (=, 8=

s) d(=B j
s&h j

s )"W m, 2(K)

�R$; &=B&h&�b&
�exp \&L

=2+
An integration by part yields 62�P1+P2+P3+P4 , where

P1=P _ sup
t�{=

R

:
r

j=1

|=B j
t &h j

t | &_j (=, 8=
t)&W m, 2(K)>

R$
4

; &=B&h&�b&
P2=P _sup

t " :
r

j=1

(_j (=, 8=), =B j) t 7 {=
R"Wm, 2(K)

>
R$
4

; &=B&h&�b&
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P3=P _sup
t " :

r

i, j=1
|

t 7 {=
R

0
_j$(=, 8=

s) _i (=, 8=
s)(=B j

s&h j
s ) = $Bi

s"W m, 2(K)

>
R$
4

; &=B&h&�b& ,

where $ denotes the Itô differential,

P4=P _=2 sup
t " :

r

j=1
|

t 7 {=
R

0
(=B j

s&h j
s) Trace(_*_j"_)(=, 8=

s) ds"W m, 2(K)

>
2R$

4
; &=B&h&�b& .

Treatment of P1 . Since supt &8=
t 7 {=

R
&W m, 2(K)�R+M, it follows from

Appendix 1 that there is a constant C such that \=�1, \j # [1, ..., r],
supt &_j (=, 8=

t)&Wm, 2(K)�C. Therefore, P1�P[Cb>R$�4]=0 for suffi-
ciently small b.

Treatment of P2 .

:
r

j=1

(_j (=, 8=), =B j) t 7 {=
R
==2 :

r

j=1
|

t 7 {=
R

0
_j$(=, 8=

s) _j (=, 8=
s) ds.

Appendix 1 yields then a constant C such that P2�P[=2C>R$�4], i.e.,
P2=0 for =2�R$�4C.

Treatment of P4 . P4�P[C=2b>2R$�4]=0 for = and b sufficiently
small.

Treatment of P3 . The control of P3 is given by an exponential
inequality for martingales with value in some Hilbert space, proved in
Appendix 2. Let (en)n be an orthonormal basis in W m, 2(K). Let us denote

v M =
t(x)=�i, j �t

0 _$j (=, 8=
s) _i (=, 8=

s)(=B j
s&h j

s ) =$Bi
s .

v T =
b=inf[t such that &=Bt&ht&�b]

v S =
R$=inf[t such that &M =

t&Wm, 2(K)�R$]

v {={=
R 7 T =

b 7 S =
R$ .

We have then to show that \K compact of Rn, \L, R, R$, a>0, there exists
b0 and =0 such that \=�=0 , \b�b0 , \h, &h&Hr�a,

63=P[ sup
t # [0, 1]

&M =
t 7 {&Wm, 2(K)�R$]�exp(&L�=2).
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For t�{, M =
t # W m, 2

K , and if we denote M =,n
t #(M =

t , en), it can be checked
that

M=, n
t =:

i, j
|

t

0
(_j$(=, 8=

s( } )) _i (=, 8=
s( } )), en)(=B j

s&h j
s) = $Bi

s

by writing the stochastic integrals as L2 -limits of Riemann sums. Therefore,

(M=, n, M=, m) t= :
i, j, l

|
t

0
=2(_j$(=, 8=

s) _i (=, 8=
s), en)(=B j

s&h j
s)

_(_l$(=, 8=
s) _i (=, 8=

s), em)(=Bl
s&hl

s) ds.

This allows us to control the quantities appearing in Appendix 2.

:
N

n,m
|

t 7 {

0
M =, n

s M =, m
s d(M=, n, M =, m) s

=:
i

=2 |
t 7{

0 _:
j

(_j$(=, 8=
s) _i(=, 8=

s), PN(M =
s))(=B j

s&h j
s )&

2

ds

(where PN is the orthogonal projection on Span[ei , i�N])

�C=2b2 :
i
|

t 7 {

0
:
j

&_j$(=, 8=
s) _i (=, 8=

s)&
2
Wm, 2(K) &PN(M =

s)&
2
Wm, 2(K) ds

�C=2b2R$2 by Appendix 1.

Moreover,

:
N

k=1

(M =, k) t 7{=:
i, k

=2 |
t 7 {

0 _:
j

(_j$(=, 8=
s) _i (=, 8=

s), ek)(=B j
s&h j

s )&
2

ds

�C=2b2 :
i
|

t 7 {

0
:
j

&PN(_j$(=, 8=
s) _i (=, 8=

s))&2
Wm, 2(K) ds

�C=2b2 by Appendix 1.

Choosing =2�R$2�Cb2, we obtain by Appendix 2

63�exp _&
(R$2&=2b2C)2

8C=2b2R$2 &�exp \&
L
=2+

for b and = sufficiently small. The proof of Lemma 4 is then complete. K

From Lemma 4, and from the continuity of F from Hr
a to (Dn, C0, k),

inequalities of large deviations are now classical. We refer the reader for
instance to Azencott [1].
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Large Deviations for the C� 0, k-Topology. In the following, the & index
will concern the C� 0, k-topology. Using the differential equations satisfied by
the inverse flow, it is easy to see that the function F defined by (3.7) is con-
tinuous from Hr

a to (Dn, C� 0,k). Therefore, we derive as previously that I is
a good rate function in C� 0, k topology.

Now, \A/Dn, A�� /A� and A1 /A1 � , so that I(A�� )�I(A� ) and I(A1 � )�I(A1 ).
But this does not allow us to conclude. The main point is that when , is
not a Cm-diffeomorphism, I(,)=�. Therefore,

I(A� )=inf[I(,), , # A� , and , Cm-diffeomorphism].

Assume then that I(A� )<� (the case I(A� )=� is obvious). Let , # A� , ,
Cm-diffeomorphism be such that I(,)=I(A� ). Let ,n be a sequence in A,
such that ,n w�C0,k

,. Since , is a Cm-diffeomorphism, we deduce from the
fact that , [ ,&1 is an open mapping, that ,n w�C� 0, k

,. Therefore , # A�� , and
I(A�� )�I(,)=I(A� ). A similar argument holds for the open sets. K

4. LARGE DEVIATIONS FOR PERTURBED STOCHASTIC
DIFFERENTIAL EQUATIONS

We will be interested in this section in the perturbed stochastic differen-
tial equation (1.1); (1.1) will be written in its Itô form

dX =
t==2_0*(X =

t) dt+= :
r

i=1

_i (X =
t) $Bi

t+_~ 0*(X =
t) dt+ :

l

j=1

_~ j (X =
t) $B� j

t

(4.10)
X =

0=x,

where

_0*( y)=
1
2

:
r

i=1
\�_i

�x
( y), _i ( y)+

_~ 0*( y)=_~ 0( y)+
1
2

:
l

j=1
\�_~ j

�x
( y), _~ j ( y)+ :

v B and B� are two independent standard Brownian motions,
respectively, defined on the Wiener spaces W=C0([0, 1], Rr) and W� =
C0([0, 1], Rl ). W and W� are endowed with the topology of uniform con-
vergence, and their Borelian _-fields. We will denote by P (respectively P� )
the Wiener measure on W (respectively W� ), and by P the measure P�P�
on W_W� . So E (respectively E� , E) will be the expectation under P (respec-
tively P� , P).
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v Ex will be the space Cx([0, 1], Rn) of all continuous paths starting
from x with values in Rn, endowed with the uniform convergence.

v _i and _~ j are assumed to be in Ck
b with k�max(n+1, 4+[n�2]).

4.1. ``Pseudo'' Large Deviations for X =

We derive from Theorem 3 some exponential lower and upper bounds
for X=, extending the results of [7, 11]. Throughout, we will denote by H l

the Cameron�Martin space associated to the Wiener space W� . When
h # Hr, and h� # Hl, G(h, h� ) will be the solution to the ordinary differential
equation

xt=x+|
t

0
:
r

i=1

_i (xs) h4 i
s ds+|

t

0
:
l

j=1

_~ j (xs) h�4 j
s ds+|

t

0
_~ 0(xs) ds.

Proposition 5. 1. Let A be an open subset of Ex :

lim inf
= � 0

=2 log P(X= # A)

� &inf[ 1
2 &h&2

Hr , h # Hr such that _h� # Hl, G(h, h� ) # A]

2. Let A be a closed subset of Ex :

lim sup
= � 0

=2 log P(X= # A)

�&inf { 1
2 &h&2

Hr , h # ,
$>0

[ g # Hr, _h� # Hl, G( g, h� ) # A$]= .

The closure is taken with respect to the uniform convergence, and

A$=[ y # Ex , _z # A &z& y&<$].

The reader is refered to Section 4.3 for the proof of Proposition 5.

4.2. Large Deviations for a Perturbed Stochastic Differential Equation

Using the Bu� rkholder�Davies�Gundy inequality, it is easy to check that
X= is in all L p(W_W� , Ex). But it has already been pointed out that one
can not expect a large deviations principle for the law of X=. However,
Fubini's theorem allows us to consider the random variable X= defined for
p�2 by

X= : W � L p(W� , Ex) (4.12)

| [ X=(|, } ).
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Let P= be the law of X= (probability measure on L p(W� , Ex)). Our purpose
is to show a large deviations principle for the family (P=)= . This will be
done by writing the solution to Eq. (1.1) in terms of the stochastic flow
defined by the stochastic differential equation (3.5) and by applying the
contraction principle. Before stating the result, we define the rate function.

Let , be in Dn. We associate to , the vector fields in Rn

s~ ,j (t, y)=,&1
t V _~ j ( y) \j # [1, ..., l]

s~ ,0(t, y)=,&1
t V _~ 0*( y)&

1
2

:
l

j=1 \
�,t

�x
( y)+

&1

_�2,t

�x2 ( y)(s~ ,j (t, y), s~ ,j (t, y))& .

(4.13)

We consider then the Itô stochastic differential equation

dz~ ,
t =s~ ,0(t, z~ ,

t ) dt+ :
l

j=1

s~ ,j (t, z~ ,
t ) $B� j

t

(4.14)
z~ ,

0=x

Without assumptions on ,, the existence of a strong solution to (4.14) is
not ensured. So we will restrict ourselves to flows of diffeomorphisms in
Dn

b , where

Dn
b={

, # Dn, sup
y # Rn, t # [0, 1] "

�m(,t)
&1

�xm ( y)"<�, m=1, 2,

= (4.15)
sup

y # Rn, t # [0, 1] "
�m,t

�xm ( y)"<�, m=1, 2, 3.

Dn
b is an open set of Dn with the C� 0, 3 topology. We define the topology

on Dn
b as the induced topology. When , is in Dn

b , the vector fields s~ ,j are
bounded and Lipschitz in y, so that (4.14) has a strong solution. Moreover,
it is easy to see that E� (supt # [0, 1] &,t(z~ ,

t )& p)<�. For p�2, we can then
consider the map D

D: Dn
b � L p(W� , Ex)

(4.16)
, [ (|~ [ ,.(z~ .,(|~ ))).

D allows us to transfer on L p(W� , Ex) the rate function I defined by (3.8).

\z # L p(W� , Ex), 4(z)=Inf[I(,), , # Dn
b D(,)=z] (4.17)

(where Inf(<)=+�).
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When A is a subset of L p(W� , Ex), we will denote by 4(A)=
Inf[4(z), z # A]. Using the expression of the rate function I, we have the
following expression for 4.

Proposition 6. For all z # L p(W� , Ex),

4(z)=inf { 1
2 &h&2

Hr , h # Hr such that P� a.e. \t,

zt=x+ :
r

i=1
|

t

0
_i (zs) h4 i

s ds

+ :
l

j=1
|

t

0
_~ j (zs) dB� j

s+|
t

0
_~ 0(zs) ds= . (4.18)

Proof. It is easily seen from the expression (3.8) of I that

4(z)=inf[ 1
2 &h&2

Hr , h # Hr, F(h) # Dn
b , D b F(h)=z],

where F is the map defined by (3.7). Now using the ordinary differential
equations satisfied by the derivatives of F(h) and F(h)&1, one can deduce
from Gronwall's lemma that F(Hr) is included in Dn

b . Furthermore,
Theorem 2 shows that D b F(h) is a solution to the stochastic differential
equation

zt=x+ :
r

i=1
|

t

0
_i (zs) h4 i

s ds+ :
l

j=1
|

t

0
_~ j (zs) dB� j

s+|
t

0
_~ 0(zs) ds. K

Once the rate function 4 is defined, we can state the large deviations
principle for the family (P=).

Theorem 7. v 4 is a good rate function.

v \A/L p(W� , Ex),

&4(A1 )�lim inf
= � 0

=2 log P=(A)�lim sup
= � 0

=2 log P=(A)�&4(A� ). (4.19)

Before proving Theorem 7, we would like to underline that it extends to
the nonnilpotent case the results of Doss and Stroock [7] when the vector
fields _i commute and those of Rabeherimanana [11] when the Lie algebra
generated by the _i is nilpotent. In these two papers, a particular version
R=, } of the conditional law of the process X= relative to (=B) is considered,
and a large deviations principle is obtained for the law Q= of the random
variable | # W [ R=, =B(|) # M1(Ex) (Q= is an element of M1(M1(Ex))).
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Applying the contraction principle, we deduce this large deviations prin-
ciple from Theorem 7 without nilpotence assumptions.

Corollary 8. 1. The map D can be extended to F(W), where F is
defined by (3.7).

2. When , # F(W), let N, be the law of the process D(,). Let us define
R=B by N F(=B). Then R=B is a version of the conditional law of X= relative to
(=B).

3. When + is an element of M1(Ex), let us define

4� (+)=inf[ 1
2 &h&2

Hr , h # Hr, such that + is the law

of the process zt solution to (4.18)].

If _=(_1 } } } _r) is a constant matrix such that a=__* is invertible, then

4� (+)={
1
2 |

1

0
&E+(|s)
�*

&E+(_~ 0*(|s))&2
a&1 ds, if + # [Rh, h # Hr]

+�, otherwise.

4. Let Q= be the law of the random variable | [ R=B(|), and let A be
a subset of M1(Ex). Then

&4� (A1 )�lim inf
= � 0

=2 log Q=(A)�lim sup
= � 0

=2 log Q=(A)�&4� (A� ). (4.20)

Proof of Corollary 8. 1 and 2 are consequences of Theorem 2, where it
is proved that, when , is in F(W), Eq. (4.14) has a strong solution defined
on [0, 1] and that P-a.e. \t # [0, 1], X =

t(|, |~ )=D(F(=B(|))) t (|~ ).
Statement 3 is quite obvious, since if +=Rh, then taking the expectation

in (4.18) yields

E+(|t)=x+|
t

0
_h4 s ds+|

t

0
E+_~ 0*(|s) ds.

Since &E+(|t)
�*

&E+(_~ 0*(|t))&2
a&1=inf[&x&2, _x=E+(|t)

�*
&E+(_~ 0*(|t))],

1
2 &h&2

Hr� 1
2 �1

0 &E+(|s)
�*

&E+(_~ 0*(|s))&2
a&1 ds. This inequality being true for

all h such that +=Rh, it also holds for 4� (+).
Moreover, let P be the orthogonal projection on G#(Ker(_))=, and

define 6h by 6ht=�t
0 Ph4 t dt; then +=R6h, _6h�*

t=E+(|t)
�*

&E+(_~ 0*(|t)).
But, since __* is invertible, _G : G � Rn is invertible, and

6h�*
t=_&1

G (E+(|t)
�*

&E+(_~ 0*(|t))).
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Thus,

&6h&2
Hr=|

1

0
&E+(|s)
�*

&E+(_~ 0*(|s))&2
(_G_*G)&1

=|
1

0
&E+(|s)
�*

&E+(_~ 0*(|s))&2
a&1

and 4� (+)� 1
2 &6h&2

Hr� 1
2 �1

0 &E+(|s)
�*

&E+(_~ 0*(|s))&2
a&1 ds.

4 is derived from the contraction principle. Indeed, the map

L p(W� , Ex), P= � M1(Ex)
(4.21)

Z [ the law of Z under P�

is continuous when M1(Ex) is endowed with the topology of weak con-
vergence. Moreover, it transforms P= into Q= . K

Remark. Let q+(s, } ) be the conjugated quadratic form of E+(_(|s))
E+(_(|s))*, that is,

q+(s, x)=inf[&w&2, E+(_(|s))w=x].

Then, Proposition 6 of [7] says that

4� (+)={
1
2 |

1

0
q+(s, E+(|s)

�*
&E+(_~ 0*(|s))) ds if + # [Rh, h # Hr]

+� otherwise.

It seems that this assertion is false. Let us consider the case

v n=r=l=1;

v _~ #1; _(x)=x; _~ 0=0;

v x=0.

Then the law + of the Ornstein�Uhlenbeck process dzt=zt dt+$B� t can be
expressed as Rh with ht=t. For all t, E(_(zt))=E(zt)=0. Thus,

q+(s, x)={0
+�

if x=0
otherwise

,

|
1

0
q+(s, E+(|s)

�*
&E+(_~ 0*(|s))) ds=0.

But, if 4� (+)=0, then +=R0; that is, + is the law of the Brownian motion.
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4.3. Proof of Proposition 5 and Theorem 7

Lemma 9. When Dn
b is provided with the C� 0, 3 topology, the map D

defined by (4.16) is continuous.

Proof of Lemma 9. Let ,n and , be flows of diffeomorphisms in Dn
b

such that ,n w�C� 0, 3
,,

&D(,n)&D(,)&Lp(W� , Ex)=E� [ sup
t # [0, 1]

&,n
t (z~ ,n

t )&,t(z~ ,
t )& p]1�p�T1+T2 ,

where

T1=sup
t, y "

�,n
t

�x
( y)" E� [sup

t
&z~ ,n

t &z~ ,
t & p]1�p

T2=E� [sup
t

&,n
t (z~ ,

t )&,t(z~ ,
t )& p]1�p.

Treatment of T1 . The first derivatives of ,n
t converge uniformly on

compact sets of [0, 1]_Rn to the first derivatives of ,t (which are
bounded). Hence, supn, t, y &(�,n

t ��x)( y)&< +�. We have now to show
that E� [supt &z~ ,n

t &z~ ,
t & p] www�n � +� 0.

For t # [0, 1], let fn(t) = E� [sups # [0, t] &z~ ,n

s & z~ ,
s & p]1�p. The triangle

inequality in L p and the convexity of x [ x p for p�1 yield

fn(t)�E� _|
t

0
&s~ ,n

0 (s, z~ ,n

s )&s~ ,n

0 (s, z~ ,
s )& p ds&

1�p

+E� _|
t

0
&s~ ,n

0 (s, z~ ,
s )&s~ ,0(s, z~ ,

s )& p ds&
1�p

+E� _ sup
s # [0, t] " :

l

j=1
|

s

0
(s~ ,n

j (u, z~ ,n

u )&s~ ,j (u, z~ ,
u)) $B� j

u& p&
1�p

.

Using the Bu� rkholder�Davies�Gundy inequality there exists a constant C
such that

E� _ sup
s # [0, t] " :

l

j=1
|

s

0
(s~ ,n

j (u, z~ ,n

u )&s~ ,j (u, z~ ,
u)) $B� j

u& p&
1�p

�CE� _\|
t

0
:
l

j=1

&s~ ,n

j (u, z~ ,n

u )&s~ ,j (u, z~ ,
u)&2 du+

p�2

&
1�p
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�C :
l

j=1

E� _\|
t

0
&s~ ,n

j (u, z~ ,n

u )&s~ ,n

j (u, z~ ,
n)&2 du+

p�2

&
1�p

+C :
l

j=1

E� _\|
t

0
&s~ ,n

j (u, z~ ,u)&s~ ,j (u, z~ ,
u)&2 du+

p�2

&
1�p

�C :
l

j=1

su
n, t, y "

�s~ ,n

j (t, y)
�x " E� _|

t

0
&z~ ,n

u &z~ ,
u& p du&

1�p

+C :
l

j=1

E� _|
t

0
&s~ ,n

j (u, z~ ,
u)&s~ ,j (u, z~ ,

u)& p du&
1�p

.

But, E� [�t
0 &z~ ,n

u &z~ ,
u& p du]1�p�(�t

0 fn(u) p du)1�p. Furthermore, the C� 0, 3

convergence of ,n to , implies the uniform convergence on compact
sets of [0, 1]_Rn of s~ ,n

i and its first derivatives to s~ ,i and its first
derivatives, which are bounded since , is an element of Dn

b . Therefore,
supn, t, y, j &�s~ ,n

j (t, y)��x&< +�. Thus there exists a constant C such that

f p
n(t)�C _|

t

0
f p

n(s) ds+ :
l

j=0

E� \|
1

0
&s~ ,n

j (u, z~ ,
u)&s~ ,j (u, z~ ,

u)& p du+& .

Gronwall's lemma yields then

\t # [0, 1], f p
n(t)�C :

l

j=0

E� \|
1

0
&s~ ,n

j (u, z~ ,
n)&s~ ,j (u, z~ ,

u)& p du+ ect

and we have to show that

\j # [0, ..., l], E� \|
1

0
&s~ ,n

j (u, z~ ,
u)&s~ ,j (u, z~ ,

u)& p du+ www�
n � +�

0.

Let R be a positive real number and B(0, R) the ball of radius R in Rn,

E� \|
1

0
&s~ ,n

j (u, z~ ,
u)&s~ ,j (u, z~ ,

u)& p du+
� sup

t # [0,1], y # B(0, R)

&s~ ,n

j (t, y)&s~ ,j (t, y)& p

+2 p&1E� [1supt # [0, 1] &z~ t
,
&�R sup

t, y
(&s~ ,n

j (t, y)& p+&s~ ,j (t, y)& p].
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The convergence of ,n to , implies that supn, t, y(&s~ ,n

j (t, y)&+&s~ ,j (t, y)&)
<�; thus, there is a constant C such that

E� \|
1

0
&s~ ,n

j (u, z~ ,
u)&s~ ,j (u, z~ ,

u)& p du+
� sup

t # [0, 1], y # B(0, R)

&s~ ,n

j (t, y)&s~ ,j (t, y)& p+CP� ( sup
t # [0,1]

&z~ ,
t &�R).

Let '>0. Since z~ , is solution to a stochastic differential equation with
bounded coefficients, we can find R such that CP� (supt # [0, 1] &z~ ,

t &�R)<
'�2. Let n0 # N be such that \n�n0 , supt # [0, 1], y # B(0, R) &s~ ,n

j (t, y)&
s~ ,j (t, y)& p<'�2. Then for n�n0 , E� (�1

0 &s~ ,n

j (u, z~ ,u)&s~ ,j (u, z~ ,
u)& p du)<'.

Treatment of T2 . Since ,n and , are elements of Dn
b , and ,n w�C� 0,3

,, one
can choose constants Kn and K such that

v \t # [0, 1], \y # Rn,

&,n
t ( y)&�Kn(1+&y&)

&,t( y)&�K(1+&y&);

v supn Kn< +�.

Therefore,

T p
2 � sup

t, y # B(0, R)

&,n
t ( y)&,t( y)& p

+C (sup
n

Kn+K) E� [sup
t

(1+&z~ ,t & p) 1supt &z~ t
,
&p>R]

� sup
t, y # B(0, R)

&,n(t, y)&,(t, y)& p

+CE� (sup
t

(1+&z~ ,
t &2p))1�2 P� [sup

t
&z~ ,t &>R]1�2.

<�

Let '>0. Let R be such that the second term is less than '�2. From the
uniform convergence of ,n to ,, we can then find n such the first term is
less than '�2. Lemma 9 follows. K

We are now able to prove Theorem 7 and Proposition 5. The key is to
write X= in terms of the stochastic flow defined by (3.5) using the map D
and, then, to apply the contraction principle. The only technical point is
that the probability for the stochastic flow to be in Dn

b is strictly less than
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one. So we will have to truncate the vector fields _i . For all R>0, we
approximate the vector fields _i by some C k

b vector fields _R
i such that

_R
i ( y)=0 if &y&�2R

_R
i ( y)=_i ( y) if &y&�R.

Let X=, R be solution to the Stratonovich stochastic differential equation,

X =, R
t =x+= :

r

i=1
|

t

0
_R

i (X =, R
s ) dBi

s

+ :
l

j=1
|

t

0
_~ j (X =,R

s ) dB� j
s+|

t

0
_~ 0(X =, R

s ) ds.

As long as X =
t stays in B(0, R), X =, R

t =X =
t . Moreover, X = and X=,R are

solutions to stochastic differential equations with bounded coefficients.
Thereby, one can find constants C0 , R0>0 such that for R�R0 and =�1,

P(sup
t

&X =
t&�R)�C0 exp(&R2�C0)

(4.22)
E(sup

t
&X =, R

t &X =
t&

p)�C0 exp(&R2�C0).

The advantage in considering X =, R instead of X = is that if 8=, R is the
stochastic flow associated to the stochastic differential equation d!=, R

t =
= �r

i=1 _R
i (!=, R

s ) dBi
s , 8=, R # Dn

b , since 8=,R(x)=x whenever x � B(0, 2R).

Proof of Proposition 5. The lower bound has already been proved in
[7] and in [11] in the general case. So we only give the proof of the upper
bound. Let A be a closed subset of Ex . Let us fix L>0, and =0=L�R0

(where R0 is chosen so that (4.22) holds). Then, for =�=0 ,

P[X= # A]�P[X=,L�= # A]+P[sup
t

&X =
t&�L�=]

�P[D(8=, L�=)(B� ) # A]+C0 exp(&L2�C0=2)

�E[N8=, L�=
(A)]+C0 exp(]&L2�C0=2).

We recall that N8 is the law of the process D(8), so that 0�N 8(A)�1.
Therefore,

P[X= # A]�P[N8 =, L�=
(A)>0]+C0 exp(&L2�C0=2).
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Notations are the same as in Corollary 8. The vector fields _L�=
i converge

in Cm
b uniformly on compact sets to the vector fields _i . From Theorem 3,

it results then that

lim sup
= � 0

=2 log P[N8 =,L�=
(A)>0]

� &inf[ 1
2 &h&2

Hr , F(h) # [, # F(W) & Dn
b , N ,(A)>0]].

But F(W)/F(Hr) (cf. [4]), and the continuity of the map D yields

[, # F(W) & Dn
b , N ,(A)>0]/[, # F(Hr), N ,(A)>0]

/ ,
$>0

F[h # Hr, N F(h)(A$)>0]

/ ,
$>0

F[h # Hr, _h� # H l, G(h, h� ) # A$].

The last inclusion is given by the support theorem for diffusion, since N F(h)

is nothing but the law of the diffusion defined by (4.18).
Let B$#[h # Hr, _h� # H l, G(h, h� ) # A$]. It remains to show that

I1#inf {1�2 &h&2
Hr , h # ,

$>0

B$=�inf {1�2 &h&2
Hr , F(h) # ,

$>0

F(B$)=#I2 .

This inequality is obvious when I2=+�. Therefore, we assume that
I2<�. Let h # Hr such that I2=1�2 &h&2

Hr and such that ,#F(h) #
�$>0 F(B$). For all $>0, let (h$

n) be a sequence in B$ such that ,$
n#

F(h$
n) � ,. Let us define the map

M: F(Hr) � Hr

, [ the unique h such that {,=F(h)
I(,)=1�2 &h&2

Hr .

It is proved in Appendix 3 that M is continuous, when Hr is endowed with
the uniform convergence. Therefore, M(,$

n) � M(,)=h. But M(,$
n)=6h$

n

(where 6 is defined by (3.9)). Moreover, it is easy to check that 6h$
n # B$ .

Thus h # �$>0 B$ and I1�1�2 &h&2
Hr=I2. K

Proof of Theorem 7. First of all, it results from the continuity of D and
the contraction principle that 4 is a ``good'' rate function.

Proof of the upper bound. Let A be a closed subset of L p(W� , Ex). Let
us fix '>0, L>0, =0=L�R0 (where R0 is chosen so that (4.22) holds). A'

will denote the subset of L p(W� , Ex) defined by
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A'=[z # L p(W� , Ex), _y # A &y&z&Lp(W� , Ex)�']

P=(A)=P(X= # A)

�P(X=, L�= # A')+P(&X =, L�=&X=&Lp(W� ,Ex)>')

�P(D(8=,L�=) # A')+P(E� (sup
t

&X =,L�=
t &X =

t&
p)>' p)

�P(D(8=,L�=) # A')+
1
' p E(sup

t
&X =, L�=

t &X =
t&

p).

For =�=0 7 1, L�=�R0 . We derive from (4.22) that the second term is
bounded up by C0 exp(&L2�C0=2). From Theorem 3, the law of 8=, L�=

satisfies a large deviations principle with rate function I. The map D being
continuous, we just have to apply the contraction principle to derive

lim sup
= � 0

=2 log P(D(8=,L�=) # A')�&4(A').

Therefore, \L>0, \'>0,

lim sup
= � 0

=2 log P=(A)� &inf(4(A'), L2�C0).

Letting L go to infinity, we derive that \'>0, lim sup= � 0 =2 log P=(A)�
&4(A'). 4 being a good rate function, 4(A') ww�' � 0 4(A).

Proof of the lower bound. Let A be an open subset of L p(W� , Ex).
When 4(A)=+�, the lower bound is trivial. So we assume that
4(A)<+�. Let g # A be such that 4( g)<+�. Let L1 be such that
4( g)<L1 . A being open, we can choose '>0 such that B( g, ')/A. Let
us fix L>- C0L1 and =0=L�R0 (where R0 , C0 are constants such that
(4.22) holds).

P=(A)�P=(B( g, '))

�P(X=, L�= # B( g, '�2); &X =,L�=&X=&Lp(W� , Ex)<'�2)

�P(X=, L�= # B( g, '�2))&P(&X =,L�=&X=&Lp(W� , Ex)�'�2)

�P(D(8=,L�=) # B( g, '�2))&
2 p

' p E(sup
t

&X =, L�=
t &X =

t&
p).

By the contraction principle,

lim inf
= � 0

=2 log P(D(8=, L�=) # B(g, '�2))�&4(B(g, '�2))�&4(g)
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For =�=0 ,

E(supt &X =, L�=
t &X =

t & p)�C0e&L 2�C0= 2

�
' p

2p e&L1 �=2
for sufficiently small =.

From 4(g)<L1 , it follows that

lim inf
= � 0

=2 log P=(A)�&4(g)

Taking the supremum over A, we obtain the result. K

5. LARGE DEVIATIONS IN A NONLINEAR
FILTERING PROBLEM

This section deals with another application of flow decomposition. It
concerns a nonlinear filtering problem that has been first studied by Doss
[6] and then by Rabeherimanana [11]. The problem can be stated as
follows. Let us consider the couple signal-observation (X=, Y=) solution to
the system of stochastic differential equations,

dX =
t== :

r

i=1

_i(X
=
t) dBi

t+=2_~ 0(X =
t) dt+ :

l

j=1

_~ j (X =
t) dY =, j

t

(5.23)dY =
t=1 (X =

t) dt+dB� t

X =
0=x; Y =

0=0,

where

v B, B� , _i , _~ j satisfy the same assumptions as in Section 4.

v 1 is a sufficiently smooth function from Rn to R l.

We want to obtain a large deviations principle for the conditional law of
the signal X= relative to the observation Y =. Such a principle has been
obtained in [6, 11] under some nilpotence assumptions for the vector
fields. As in Section 4, we would like to free ourselves of these assumptions
by using flow decomposition, and the large deviations for stochastic flows.

As done in [6, 11], the first step to obtain such a principle is to make
a change of probability, in such a way that the new law of Y = is the law
of a Brownian motion independent of B. So we are led to obtain a large
deviations principle for the conditional law of the process X= defined by
(1.1) relative to the Brownian motion B� .
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5.1. Large Deviations for the Conditional Law
of X= Relative to B

We begin by decomposing the stochastic differential equation (4.10) (or
(1.1)). Let , be in Dn. We associate to , the vector fields

s,
i (t, y )=,&1

t V _i ( y ) \i # [1, ..., r]

s,
0(t, y )=,&1

t V _0*( y )&
1
2

:
r

i=1
\�,t

�x
( y )+

&1

__�2,t

�x2 ( y )(s,
i (t, y ), s,

i (t, y))& . (5.24)

We consider then the Itô stochastic differential equation,

dz,, =
t ==2s,

0(t, z,, =
t ) dt+= :

r

i=1

s,
i (t, z,, =

t ) $Bi
t

(5.25)
z,, =

0 =x.

s,
i are continuous and locally Lipschitz. Thus, the trajectories of z,, = may

explode. Nevertheless, (5.25) defines a map from W to the space of
explosive trajectories Ex(Rn) (see Azencott [1]),

Ex(Rn)=[ f : [0, 1] � Rn _ �, f (0)=x, f continuous:

f (t0)=� O \t # [t0 , 1], f (t)=�].

When f # Ex(Rn), we define the explosion time of f as

{( f )#inf[s, f (s)=�].

We will say that a sequence ( fn)n in Ex(Rn) converges to f # Ex(Rn) if and
only if ( fn)n converges to f uniformly on compact subsets of [0, {( f )[. In
particular, this means that {( f )�lim inf {( fn). Similarly as in Section 4, we
define then the map

D� : Dn � L0(W, Ex(Rn))

, [ (| [ ,.(z.
,, =))

(with the convention ,t(�)=�).
Let T =(,, d|) denote the law of the process D� (,)(T =(,, d|) is a prob-

ability measure on Ex(Rn)). We will show a large deviations principle for the
family (T=(,, d|))= . As in Section 3, we begin with the ``quasicontinuity'' of
the map =| [ D� (,)(=|).
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Proposition 10. Given h # Hr and , # Dn, we define the process x,(h) as
the solution to the ordinary differential equation

x,
t (h)=x+|

t

0
:
r

i=1

s,
i (s, x,

s (h)) h4 i
s ds. (5.26)

Then, \, # Dn, \K compact sets of Rn, \a>0, \L>0, \R>0, \T # ]0, 1],
_b, =0 such that \=�=0 , \h # Hr such that &h&H r�a, x,(h)([0, T])/K,

P[ sup
t # [0, T]

&,t(z,, =
t )&,t(x,

t (h))&�R; &=B&h&�b]�e&L�=2
.

Proof of Proposition 10. \'>0, we will denote by K' the set K'=[ y # Rn,
_z # K & y&z&�']. Let ' # ]0, 1[ be such that

sup
t # [0, 1], y, z # K 1, & y&z&�'

&,t( y )&,t(z)&<R.

Then,

P[ sup
t # [0, T]

&,t(z,, =
t )&,t(x,

t (h))&�R; &=B&h&�b]

�P[ sup
t # [0, T]

&,t(z,, =
t )&,t(x,

t (h))&�R; sup
t # [0, T]

&z,, =
t &x,

t (h)&�']

+P[ sup
t # [0, T]

&z,, =
t &x,

t (h)&�'; &=B&h&�b]

�P[ sup

& y&z&�'

t # [0, 1]
y, z # K1

&,t( y )&,t(z)&�R]

+P[ sup
t # [0, T]

&z,, =
t &x,

t (h)&�'; &=B&h&�b]

=P[ sup
t # [0, T]

&z,, =
t &x,

t (h)&�'; &=B&h&�b].

So we are led to show that \K compact subsets of Rn, \T # ]0, 1], \a,
L>0, \R>0, tere exists =0 , b>0 such that \=�=0 and \h # Hr, &h&H r�a,
x,(h)([0, T])/K,

P[ sup
t # [0, T]

&z,, =
t &x,

t (h)&�R; &=B&h&�b]�e&L�= 2
.

Case h=0. We will need the following lemma, which states the
quasicontinuity in the case h=0.
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Lemma 11. Given c: [0, 1]_Rn � Rn in C0, k, we define the processes
z� ,, = and x� , as the solutions (in Ex(Rn)) to the equations

z� ,, =
t =x+|

t

0
c(s, z� ,, =

s ) ds+=2 |
t

0
s,

0(s, z� ,, =
s ) ds+= :

r

i=1
|

t

0
s,

i (s, z� ,, =
s ) $Bi

s

x� ,
t =x+|

t

0
c(s, x� ,

s ) ds.

Then, \, # Dn, \L, R>0, \T # ]0, 1], \K compact subset of Rn such that
x� ,([0, T])/K, _b, =0 such that \=�=0 ,

P[ sup
t # [0, T]

&z� ,, =
t &x� ,

t &�R; &=B&�b]�e&L�= 2
.

Proof of Lemma 11. Let %=
R be the stopping time,

%=
R=inf[s such that &z� ,, =

s &x� ,
s &�R].

When t�%=
R 7 T, z� ,, =

t # KR. Therefore {(z� ,, =)>%=
R 7 T P-a.e. Furthermore,

P[ sup
t # [0, T]

&z� ,, =
t &x� ,

t &�R; &=B&�b]

=P[ sup
t�% =

R 7 T
&z� ,, =

t &x� ,
t &�R; &=B&�b].

For all t�%=
R 7 T,

&z� ,, =
t &x� ,

t &�|
t

0
&c(s, z� ,, =

s )&c(s, x� ,
s )& ds+=2 |

t

0
&s,

0(s, z� ,, =
s )& ds

+= " :
r

i=1
|

t

0
s,

i (s, z� ,, =
s ) $Bi

s"
� sup

t, y # K R "
�c
�x

(t, y)" |
t

0
&z� ,, =

s &x� ,
s & ds+=2 sup

t, y # K R
&s,

0(t, y )&

+" = :
r

i=1
|

t

0
s,

i (s, z� ,, =
s ) $Bi

s" .

By Gronwall's lemma, we obtain that for some constant C (depending on
K and R),

sup
t�% =

R 7T
&z� ,, =

t &x� ,
t &�C \=2+ sup

t�% =
R 7T " = :

r

i=1
|

t

0
s,

i (s, z� ,, =
s ) $Bi

s"+ .
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Therefore,

P[ sup
t�% =

R 7 T
&z� ,, =

t &x� ,
t &�R; &=B&�b]

�P _=2C�
R
2&+P _ sup

t�%=
R 7 T "= :

r

i=1
|

t

0
s,

i (s, z� ,, =
s ) $Bi

s"�
R
2C

; &=B&�b& .

The first term vanishes when =<(R�2C )1�2. Thus, we are led to show that
\L, R, R$>0, _b, =0 such that

=�=0 O P _ sup
t�% =

R 7 T "= :
r

i=1
|

t

0
s,

i (s, z� ,, =
s ) $Bi

s"�R$; &=B&�b&�e&L�= 2
.

For all integer n, we define

v tk=k�n (k=0, ..., n).

v ,n(t, y)=,(tk , y) \y # Rn, \t # [tk ; tk+1[.

v z� ,, n, =
t =z� ,, =

tk
\t # [tk ; tk+1[.

Let L be a compact set in Rn such that [,(t, y ); t # [0, 1], y # KR]/L :

P _ sup
t�%=

R 7 T " = :
r

i=1
|

t

0
s,

i (s, z� ,, =
s ) $Bi

s"�R$; &=B&�b&�P1+P2+P3

with

v P1=P[supt�%=
R 7 T&z� ,, n, =

t &z� ,, =
t &+&,n&,&C� 0, 1 (L)>#]

v P2=P[sup t�%=
R 7 T&z� ,, n, =

t &z� ,, =
t &+&,n&,&C� 0, 1 (L)�#;

sup t�%=
R 7 T&= �r

i=1 �t
0 (s,

i (s, z� ,, =
s )&s,n

i (s, z� ,, n, =
s )) $Bi

s&�R$�2]

v P3=P[sup t�%=
R 7 T&= �r

i=1 �t
0 s, n

i (s, z� ,, n, =
s ) $Bi

s�R$�2; &=B&�b].

Treatment of P2 . = �r
i=1 �t 7 %=

R 7 T
0 (s,

i (s, z� ,, =
s )&s, n

i (s, z� ,, n, =
_ )) $Bi

s is a
martingale with quadratic variation

=2 :
r

i=1
|

t 7 %=
R 7 T

0
&s,

i (s, z� ,, =
s )&s, n

i (s, z� ,, n, =
s )&2 ds

�C=2( sup
s�%=

R 7T
&z� ,, =

s &z� ,, n, =
s &+&,n&,&C� 0, 1 (L))

2

�C=2#2.

Therefore, P2�C1e&C2R$2�=2#2
� 1

2e&L�=2
for # and = sufficiently small.
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Treatment of P1 .

&,n&,&C� 0, 1(L)� sup

y # L

t, t$ # [0, 1]
|t&t$|<1�n

:

|:|�1
: # N n \"

�|:|,t

�x: ( y )&
�|:|,t$

�x: ( y)"

+"�|:|,&1
t

�x: ( y )&
�|:|,&1

t$

�x: ( y )"+ .

Thus, the continuity in (t, y ) of the functions ,t( y ), ,&1
t ( y ), (�,t��x)( y ),

((�,t��x)( y))&1, shows that &,n&,&C� 0, 1(L) � n � �0. Once # is fixed, it is
possible to choose n1 such that for n�n1 , &,n&,&C� 0, 1(L)<#�2. Thus, for
n�n1 ,

P1�P _ sup
t�% =

R 7 T
&z� ,, n, =

t &z� ,, =
t &>

#
2& .

Now, \=�1,

sup
t�%=

R 7 T
&z� ,, n, =

t &z� ,, =
t &= sup

t�%=
R 7 T

k; t # [tk , tk+1 [ "|
t

tk

c(s, z� ,, =
s ) ds+|

t

t k

=2s,
0(s, z� ,, =

s ) ds

+ :
r

i=1
|

t

t k

s,
i (s, z� ,, =

s ) = $Bi
s"

� sup
t, y # K R

(&c(t, y )&+&s,
0(t, y)&)

1
n

+ sup

t�%=
R 7 T

k; t # [tk , t k+1 [ " :
r

i=1
|

t

tk

s,
i (s, z� ,, =

s ) = $Bi
s" .

So,

P _ sup
t�%=

R 7 T
&z� ,, n, =

t &z� ,, =
t &>

#
2&

�P _ sup
t, y # K R

(&c(t, y )&+&s,
0(t, y )&)

1
n

>#�4&
+ :

n&1

k=0

P _ sup

t�%=
R 7 T

t # [t k , t k+1[ "|
t

t k

:
r

i=1

s,
i (s, z� ,, =

s ) = $Bi
s">

#
4& .
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The first term of the summation vanishes for sufficiently large n (n�n2).
Furthermore, the quadratic variation of �t

tk
= �r

i=1 s,
i (s, z� ,, =

s ) $Bi
s is

bounded up by C=2�n. Therefore for n�sup(n1 , n2)

P1�C1e&C2# 2n�=2
� 1

2e&L�=2

for large n and small =.

Treatment of P3 . For s # [tk , tk+1 [, s, n

i (s, z� ,, n, =
s )=s,

i (tk , z� ,, =
tk

). This
yields that \t�%=

R 7 T,

"|
t

0
= :

r

i=1

s, n

i (s, z� ,, n, =
s ) $Bi

s"="= :
n&1

k=0

:
r

i=1

s,
i (tk , z� ,, =

t k
)(Bi

t 7 t k+1
&Bi

t 7 tk
)"

� sup
i, t, y # K R

&s,
i (t, y)& :

i, k

&=Bi
t k+1

&=Bi
t k

&

�Cbn.

Therefore, P3�P(Cbn�R$�2)=0 for b sufficiently small. And the proof
of Lemma 11 is complete. K

We return now to the proof of Proposition 10, that is, to the case h{0.

Case h{0. Given h # Hr, &h&H r�a, x,(h)([0, T])/K, we define

v the process W =
t=Bt&ht�=

v the probability P= on W by

dP=

dP }_(Bs , s�t)
=exp _1

= |
t

0
(h4 s , $Bs)&

1
2=2 |

t

0
&h4 s &2 ds&

v A#[supt�T&z,, =
t (=B)&x,

t (h)&�R] & [&=B&h&�b].

v B#[�1
0 (h4 s , $Bs)<&*�=].

Then, P(A)�P(B)+E=[(dP�dP=) 1A1Bc]. Since �1
0 (h4 s , $Bs) is gaussian

with mean 0 and variance &h&2
H r ,

P(B)�
= &h&H r

* - 2?
exp \&

*2

2=2 &h&2
H r+�

1
2

exp \&
L
=2+

for large * and small =:

E = _ dP
dP= 1A 1B c&�exp \ *

=2+ exp \ a
2=2+

_P=[sup
t�T

&z,, =
t &x,

t (h)&�R; &=W =&�b]
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with

dz,, =
t ==2s,

0(t, z,, =
t ) dt+ :

r

i=1

s,
i (t, z,, =

t ) h4 i
t dt+= :

r

i=1

s,
i (t, z,, =

t ) $W =, i
t

dx,
t (h)= :

r

i=1

s,
i (t, x,

t (h)) h4 i
t dt.

Under P=, W= is a standard Brownian motion. Applying Lemma 11
with c(t, y ) = �r

i=1 s,
i (t, y ) h4 i

t , we obtain an exponential bound for
E=[(dP�dP=) 1A 1Bc], and the proof of Proposition 10 follows. K

From Proposition 10, we derive as usually a large deviations principle
for the family (T=(,, d|))= .

Proposition 12. For , fixed in Dn, we define the rate function L, on
Ex(Rn) by

\z # Ex(Rn), L,(z)=inf[ 1
2 &h&2

H r , h # H r such that z.=,.(x.
,(h))],

where x,(h) is solution to (5.26). Then we have

v L, is a ``good '' rate function.

v \A/Ex(Rn),

&L,(A1 )�lim inf
= � 0

=2 log T =(,, A)�=2 lim sup
= � 0

=2 log T =(,, A)�&L,(A� ).

Moreover, if {(z,, =)>1, P-a.e., and if \h # Hr, {(x,(h))>1, the result remains
true when the topological space Ex(Rn) is replaced by the topological space Ex .

Proof of Proposition 12. It results as usual from the quasicontinuity and
the continuity of the map h # H r

a [ ,(x,(h)) # Ex(Rn). K

We derive from Proposition 12 a large deviations principle for a particular
version of the conditional law of X= relative to B� . As in Section 4, we define:

F� : H l � Dn

(5.27)h� [ flow of diffeomorphisms associated to the
ordinary differential equation

dxt=_~ 0(xt) dt+ :
l

j=1

_~ j (xt) h4� j
t .

According to the results of Bismut [4], F� can be extended in a measurable
way to W� . This extension will still be denoted by F� . We define then for
P� -almost all |~ :
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v the probability N=(|~ , d|)#T =(F� (|~ ), d|);

v \h # H l, !� (h)(|~ )#F� (|~ )(xF� (|~ )(h));

v the rate function l|~ =LF� (|~ ) .

We have then the following result.

Proposition 13. 1. \h # H r, !� t(h) is a solution to

d!� t(h)=x+ :
r

i=1
|

t

0
_i (!� s(h)) h4 i

s ds+|
t

0
_~ 0(!� s(h)) ds

+ :
l

j=1

_~ j (!� s(h)) dB� j
s

and l|~ (z)=inf[1�2 &h&2
H r , h # H l such that, z=!� (h)]. P� -a.e., l|~ is a good

rate function.

2. N=(|~ , d|) is a probability measure on Ex , which is a version of the
conditional law of X= relative to B� . P� -a.e. \A/Ex :

&l|~ (A1 )�lim inf
= � 0

=2 log N=(|~ , A)�lim sup
= � 0

=2 log N=(|~ , A)�&l|~ (A� ).

Proof of Proposition 13. Point 1 is a consequence of Theorem 2 and of the
definition of l|~ . We derive also from Theorem 2 that P({(zF� (|~ ), =(|))>1)=1
and P-a.e. X=(|, |~ )=D� (F� (|~ ))(|). Therefore, N=(|~ , d|) is version of the
law of X= relative to B� . Large deviation inequalities are the same as in
Proposition 12. K

5.2. Application to Nonlinear Filtering

We consider now the original problem, that is, large deviations for the
conditional law of X = relative to Y =, where (X =, Y =) is a solution to (5.23).
To begin with, we introduce some notations:

v An element y of Rn+1 will be decomposed into ( y1 , y2), where
y1 # Rn and y2 # R.

v We define the following vector fields in Rn+1: \y # Rn+1,

�� \i # [1, ..., r], *i ( y)#\_i ( y1)
0 + ;

�� \j # [1, ..., l], *� j ( y )#\_~ j ( y1)
1j ( y1)+ ;
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�� *� 0( y )#\
_~ 0( y1)

+&
1
2

:
l

j=1
\�1j

�x
( y1), _~ j ( y1)+

�� *0*( y )#
1
2

:
r

i=1
\�*i

�x
( y ), *i ( y )+ .

v A flow , of diffeomorphisms in Rn+1 transports these vector fields
into

&ŝ,
i (t, y)=,&1

t V *i ( y ), i=1, ..., r,

&ŝ,
0(t, y )=,&1

t V *0*( y )&
1
2

:
r

i=1
\�,t

�x
( y )+

&1

__�2,t

�x2 ( y )(ŝ,
i (t, y ), ŝ,

i (t, y ))& .

v For all , # Dn+1, we will denote by ẑ,, = the process in Ex(Rn+1)
solution to

dẑ,, =
t ==2ŝ,

0(t, ẑ,, =
t ) dt+= :

r

i=1

ŝ,
i (t, ẑ,, =

t ) $Bi
t

ẑ,, =
o =(x, 0).

v We map then Dn+1 to L0(W, Ex(Rn+1)) by

D� : Dn+1 � L0(W, Ex(Rn+1))

, [ (| [ ,.(ẑ.
,, =(|))).

v The processes C =, ,
(1) # Ex(Rn) and C =, ,

(2) # Ex(R1) are defined by

D� (,)#(C =, ,
(1) , C =, ,

(2) ).

v Finally, we will denote by F the ``flow'' map

F� : W� � Dn+1

|~ [ stochastic flow associated to the stochastic differential

equation d!� t=*� 0(!� t) dt+ :
l

j=1

*� j (!� t) dB� j
t .

We then have then the following result.
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Theorem 14. 1. \A # B(Ex(Rn)), we define

M=(|~ , A)#
E[1A(C =, F� (|~ )

(1) ) exp(C =, F� (|~ )
(2), 1 & 1

2 �1
0 &1 (C =, F� (|~ )

(1), s )&2 ds)]
E[exp(C =, F� (|~ )

(2), 1 & 1
2 �1

0 &1 (C =, F� (|~ )
(1), s )&2 ds)]

M=(|~ , v ) is a probability measure on Ex , which is a version of the condi-
tional law of X = relative to Y =.

2. P� -a.e., \A/Ex ,

&l|~ (A1 )�lim inf
= � 0

=2 log M=(|~ , A)�lim sup
= � 0

=2 log M=(|~ , A)�&l|~ (A� )

with l|~ as in Proposition 13.

Proof of Proposition 14. \=>0, we define a new probability P� = on
W�W� by

dP� =

dP }_(B s , B� s , s�t)

=exp _&|
t

0
1 (X =

s) $B� s&
1
2 |

t

0
&1 (X =

s)&
2 ds&

=exp _&|
t

0
1 (X =

s) $Y =
s+

1
2 |

t

0
&1 (X =

s)&
2 ds& .

Under P� =, Y = has the law of a Brownian motion independent of B.
Therefore, (X =, Y =) has the same law under P� = as (X=, B� ) under P. Let G
and H be two measurable functions respectively defined on Ex and E0 :

E(G(X =) H(Y =))=E� = \G(X =) H(Y =)
dP

dP� =+
=E _G(X=) H(B� ) exp \|

1

0
1 (X =

s) $B� s

&
1
2 |

1

0
&1 (X =

s)&
2 ds+& .

We deduce then that P� -a.e.

E(G(X =)|Y ==|~ )=
E[G(X=) exp(�1

0 1 (X =
s) $B� s&

1
2�1

0 &1 (X =
s)&

2 ds)| B� =|~ ]
E[exp(�1

0 1 (X =
s) $B� s&

1
2 �1

0 &1 (X =
s)&

2 ds)| B� =|~ ]
.

The process S =
t=(X =

t , �t
0 1 (X =

s) $B� s) satisfies the stochastic differential
equation

dS =
t== :

r

i=1

*i (S
=
t) dBi

t+ :
l

j=1

*� j (S
=
t) dB� j

t +*� 0(S=
t) dt

S =
0=(x, 0).
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Thus, the decomposition of stochastic diffential equations yields

v P-a.e., {(ẑF� (|~ )(|))>1.

v P-a.e., S ==D� (F� (|~ ))(|).

By independence of B and B� , it results that P� -a.e., \A # B(Ex),

E(1A(X =)| Y ==|~ )=
E[1A(C =, F� (|~ )

(1) ) exp(C =, F� (|~ )
(2), 1 & 1

2 �1
0 &1 (C =, F� (|~ )

(1), s )&2 ds)]
E[exp(C =, F� (|~ )

(2), 1 & 1
2 �1

0 &1 (C =, F� (|~ )
(1), s )&2 ds)]

=M=(|~ , A)

This proves 1.

Proof of the lower bound. Let A be an open set of Ex . When
l|~ (A)=+�, the lower bound is trivial, let us suppose that l|~ (A)<+�.
Let h # H r be such that

z#F� (|~ )(xF� (|~ )(h)) # A (where x,(h) is defined by (5.26))

1
2 &h&2

H r=l|~ (z)=l|~ (A).

let us introduce

v the random variable,

U=#exp \C =, F� (|~ )
(2), 1 & 1

2 |
1

0
&1 (C =, F� (|~ )

(1), s )&2 ds+ (5.28)

v the process W =
t=Bt&ht�=

v the probability measure P= on W,

dP=

dP }_(Bs , s�t)

=exp _1
= |

t

0
(h4 s , $W =

s)+
1

2=2 |
t

0
&h4 s&2 ds& .

Then, M=(|~ , A)=E(1A(C =, F� (|~ )
(1) ) U=)�E(U=). By Girsanov's transformation,

E(1A(C =, F� (|~ )
(1) )U =)

=E= \1A(C =, F� (|~ )
(1) ) U= dP

dP=+
=E \1A(C� =, F� (|~ )

(1) ) U� = exp \&
1
= |

t

0
(h4 s , $Bs)&

1
2=2 |

t

0
&h4 s&2 ds++ ,
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where

&C� =, ,(|)=D� (,) \|+
h
=+

&U� ==exp \C� =, F� (|~ )
(2), 1 &

1
2 |

1

0
&1 (C� =, F� (|~ )

(1), s )"
2

ds+ .

Therefore,

E(1A(C =, F� (|~ )
(1) ) U =)�E(1A(C� =, F� (|~ )

(1) ) U� = 1�0
1 h4 s $B s�K)

_exp \&
l|~ (A)

=2 + exp \&
K
= + .

Now, using well-known results about the asymptotic behavior of perturbed
dynamic systems, P-a.e., C� =, , ww�= � 0

,(z,) in Ex(Rn), where z, is a solution
to the ordinary differential equation,

z,
t =\x

0++ :
r

i=1
|

t

0
ŝ,

i (s, z,
s ) h4 i

s ds.

Thus, P-a.e., U� = ww�
= � 0

U� 0, with U� 0>0 and independent of B.
Moreover, it is easily seen from definition of F� that

\t # [0, 1], \(x1 , x2) # Rn+1, F� t(|~ )(x1 , x2)=\ F� t(|~ )(x1)
x2+Gt(x1 , |~ )+

for some function G and F� defined by (5.27). This yields that

v \i # [1, ..., r],

ŝF� (|~ )
i (t, x1 , x2)=\

sF� (|~ )
i (t, x1)

+ .
&

�Gt

�x1

sF� (|~ )
i (t, x1)

v \t # [0, 1], zF� (|~ )
1, t =xF� (|~ )

t (h).

Therefore, C� =, F� (|~ )
(1) � F� (|~ )(xF� (|~ )

t (h))=z. By Fatou's lemma, we deduce then
that

lim inf
= � 0

E(1A(C� =, F� (|~ )
(1) ) U� =1 �1

0 h4 s $B s�K)�E(1A(z) U� 01�1
0 h4 s $B s�K )

=U� 0P \|
1

0
h4 s $Bs�K+

�U� 0�2
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for sufficiently large K. It results then that

lim inf
= � 0

=2 log E(1A(C =, F� (|~ )
(1) ) U=)�&l|~ (A).

Now, =2 log M=(|~ , A)==2 log E(1A(C =, F� (|~ )
(1) )U=)&=2 log E(U =). The lower

bound follows then from the fact that P� -a.e. \p�1, sup=�1 E((U=) p)<�,
which is proved in Appendix 4.

Proof of the upper bound. Let A be a closed subset of Ex . Using
Ho� lder's inequality, \p>1,

=2 log M=(|~ , A)�
1
p

=2 log E(1A(C =, F� (|~ )
(1) ))+

1
q

=2 log E((U=)q)

&=2 log E(U=)

(with 1�p+1�q=1).
The particular form of F� (|~ ) implies that C =, F� (|~ )

(1) =F� (|~ )(zF� (|~ ), =), where
z,, = is defined by (5.25). Since P� -a.e. \p�1, sup=�1 E((U=) p)<�, we have

lim sup
= � 0

=2 log M=(|~ , A)�
1
p

lim sup
= � 0

=2 log P(F� (|~ )(zF� (|~ ), =) # A)

�&
1
p

l|~ (A) by Proposition 13.

Letting p decrease to 1, we obtain the result. K

APPENDIX 1

Let F and G be two functions in C m
b (Rn, R). Let 0 be a bounded domain

in Rn. Let ,, �: 0 � Rn be in Wm, 2(0). We assume that there is a constant
R>0 such that

&,&Wm, 2(0)�R

&�&Wm, 2(0)�R.

Then, if m�n+1,

1. F b , # Wm, 2(0), and there is a constant C>0 such that

sup
,, &,& W m, 2 (0)�R

&F b ,&W m, 2 (0)�C.

2. When F # C m+1
b , &F b ,&F b �&Wm, 2 (0)�C &,&�&W m, 2 (0) .

3. &F b ,&G b ,&Wm, 2 (0)�C &F&G&C b
m .
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Proof. \: # Nn, |:|�m,

D:(F b ,)(x)= :

|;|�|:|
; # N n

D;F(,(x)) P;(x),

where P; is a polynomial in the derivatives of ,, whose each monomials
>l

i=1 D# i ,(x) satisfies �l
i=1 #i=:. Therefore,

|
0

&D:(F b ,)(x)&2 dx�C :

|;|�|:|
; # N n

sup
x

&D;F(x)&2 |
0

&P;(x)&2 dx.

Thus, we have to control terms such as �0 >l
i=1 &D# i ,(x)&2 dx with

�i #i=:. When |#i |�m&[n�2]&1, the Sobolev embedding theorem
ensures that

sup
x

&D#i ,(x)&�C &,&Wm, 2 (0)�CR.

But there is at most one term with |#i |>m&[n�2]&1. Indeed, if |#i0
|�

m&[n�2],

:
i{i0

|#i |=|:|&|#i0
|�_n

2&�m&_n
2&&1,

since m�n+1. Therefore,

|
0

`
l

i=1

&D#i ,(x)&2 dx� `
i{i 0

sup
x

&D# i ,(x)&2 |
0

&D# i 0,(x)&2 dx

�CR2l&2 &,&2
Wm, 2 (0)�CR2l.

This proves 1. 2 and 3 are obtained in a similar way:

|
0

&D:(F b ,)(x)&D:(F b �)(x)&2 dx

�C :

|;| �|:|
; # Nn

sup
x

&D;F(x)&2 |
0

&P;(x)&Q;(x)&2 dx

+C :

|;| �|:|
; # N n

sup
x

&D;F(,(x))&D;F(�(x))&2 |
0

&Q;(x)&2 dx.
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Q; is the same polynomial as P; , for the derivatives of �. Since F is in
Cm+1

b ,

sup
x

&D;F(,(x))&D;F(�(x))&2�C sup
x

&,(x)&�(x)&2

�C &,&�&2
Wm, 2 (0) .

We obtain an upper bound (depending on R) to �0 &Q;(x)&2 (x) dx as pre-
viously. To control �0 &P;(x)&Q;(x)&2 dx, we have to bound up terms
such as

|
0 " `

l

i=1

D# i ,(x)& `
l

i=1

D#i �(x)"
2

dx

�C :
l

i=1
|

0 "`
j<i

D# j ,(x)(D# i ,(x)&D#i �(x)) `
j>i

D# j �(x)"
2

dx.

The same argument as for 1 implies 2. Finally,

|
0

&D:(F b ,)(x)&D:(G b ,)(x)&2 dx

�C :

| ;|�|:|
; # N n

|
0

&(D;F(,(x))&D;G(,(x))) P;(x)&2 dx

�C &F&G&2
Cb

m :

|;|�|:|
; # N n

|
0

&P; (x)&2 dx. K

APPENDIX 2

Let H be a Hilbert space, and let (en)n be an orthonormal basis of H.
Let (0, A, (Ft)t # [0, 1] , P) be a probability space. Let Mt be a Ft -adapted
process with value in H.

We assume that for all n, M n
t #(Mt , en) is a real Ft -martingale and that

there exists constants K, L>0 such that \N # N*, \t # [0, 1],

:
N

k=1

(Mk) t�K P-a.e.

:
N

k, l=1
|

t

0
Mk

s Ml
s d(Mk , Ml ) s�L P-a.e.
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Then, \R such that R2�K,

P[ sup
t # [0, 1]

&Mt&H�R]�exp _&
(R2&K )2

8L & .

Proof. Let VN#Span(e1 , ..., eN ), and let PN denote the orthogonal
projection on VN :

P[ sup
t # [0, 1]

&PNMt&H�R]=P[ sup
t # [0, 1]

&PN Mt&
2
H�R2]

�P _ sup
t # [0, 1] \ :

N

k=1

(Mk
t )2&(Mk) t+�R2&K& ;

�N
k=1 (Mk

t )2&(Mk) t is a real martingale, whose quadratique variation is

4 :
N

k, l=1
|

t

0
M k

s M l
sd(Mk, Ml ) s�4L.

As a result:

P[ sup
t # [0, 1]

&PN (Mt)&H�R]�exp _&
(R2&K )2

8L & .

Letting N go to infinity, Beppo Levi's lemma yields the result. K

APPENDIX 3

The map

M: F(H r) � H r

, [ the unique h such that {,=F(h)
I(,)=1�2 &h&2

H r

is continuous, when H r is endowed with the uniform convergence.

Proof. Let (,n) and , be such that ,n � C� 0, k ,. Let hn=M(,n) and
h=M(,). By Theorem 3, dt-a.e. h4 n

t and h4 t # V=. Moreover,

,n
t (x)&,t(x)=|

t

0
(_(,n

s (x))&_(,s(x))) h4 s ds

+|
t

0
_(,n

s (x))(h4 n
s &h4 s) ds.
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Using the properties of _, we derive that for all K compact subset of Rn,

sup
t, x # K "|

t

0
_(,n

s(x))(h4 n
s &h4 s) ds" ww�

n � �
0. (5.29)

Now let us note that V=�x # R n Ker _(x)=�x # I Ker _(x), where I is a
finite set. Let K0 be a compact set of Rn such that I/K0 . The convergence
of ,n to , yields

sup
s, x # K0

&(,n
s )&1(x)& � sup

s, x # K0

&(,s)
&1 (x)&.

Thus, there is a compact set K of Rn such that

[(,n
s )&1(x), x # K0 , s # [0, 1], n # N]/K.

Now, supt, x # I &�t
0 _(x)(h4 n

s & h4 s) ds& � supt, x # K &�t
o _(,n

s(x))(h4 n
s & h4 s) ds&.

Using (5.29), we obtain that

sup
t, x # I

&_(x)(hn
t &ht)& � 0.

Let I=[x1 , ..., xn], _i#_(xi ), Vi#Ker _i , and Pi be the orthogonal
projection on V =

i :

sup
t

&_i (hn
t &ht)&=sup

t
&_i (Pi (hn

t &ht))&

�*min((_Vi
=

i )* _V i
=

i )1�2 sup
t

&Pi (hn
t &ht)&,

where

v for all matrix S symmetric and positive, *min(S ) is the lowest eigen-
value of S.

v _V i
=

i : V =

i � Im(_i )

y [ _i ( y ).

By definition, _Vi
=

i is invertible; thus *min((_V i
=

i )* _Vi
=

i )>0. Therefore, \i #
[1, ..., n], supt &Pi (hn

t &ht)& � 0. But, hn
t &ht # V==(� Vi )

==� V=

i and
we obtain that supt &hn

t &ht& � 0. K

APPENDIX 4

Let U= be defined in Section 5 by (5.28). Then\p, P� -a.e. sup=�1 E[(U=) p]<�.

Proof. We will in fact show that E� [sup=�1 E[(U=) p]]<�:
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E� [sup
=�1

E[(U=) p]]�E[sup
=�1

(U =) p]

�E _sup
=�1

exp \p |
1

0
1 (X =

s) $B� s&
p
2 |

1

0
&1 (X =

s)&
2 ds+&

�E _sup
=�1

exp \p |
1

0
1 (X =

s) $B� s+& .

Let

X =
t

M =
t#p �t

0 1 (X =
s) $B� s ; V =

t#\M=
t+=

is a solution to

dV =
t=*i (V =

t) dBi
t+*� j (V =

t) dB� j
t +*0(V =

t) dt

x
V =

0=\0+=

where

x =_i (x) x _~ j (x)

*i\m+=\ 0 + , *� j \m+=\p1j (x)+ ,

= 0 = 0

x _~ 0(x)

*0 \m+=\1�2 � j 1 $j (x) 1j (x)+ .

= 0

Thus all these vector fields are C m
b on Rn_R+_[0, 1]. Therefore, there is

a version of V= which is continuously differentiable in (x, =). Moreover,
�V=��= is a solution to the variational equation

d \�V =
t

�= +=:
i

*$i (V =
t)

�V =
t

�=
dBi

t+:
j

*� $j (V =
t)

�V =
t

�=
dB� j

t

+*$0(V =
t)

�V =
t

�=
dt

0
�V =

0

�=
=\0+ .

1

65FLOW DECOMPOSITION



File: 580J 290544 . By:BV . Date:22:08:96 . Time:13:08 LOP8M. V8.0. Page 01:01
Codes: 2270 Signs: 908 . Length: 45 pic 0 pts, 190 mm

Therefore,

E[sup
=�1

exp(M=
t)]�E _|

1

0
exp(M =

t) } �M =
t

�= } d=&+E(exp(M 0
t ))

�|
1

0
E[exp(2M =

t)]1�2 E _\�M =
t

�= +
2

&
1�2

d=+E(exp(M 0
t )).

v Since (M=) t=p2 �t
0 &1 (X =

s)&
2 ds is bounded by some constant K,

for all =�1, E[exp(2M=
t)]�exp(2K).

v E _\�M=
t

�= +
2

&=E _��M=

�= �t&
=p2E _:

j
|

t

0 \1 $j (X =
s),

�X =
s

�= +
2

ds&
�C |

t

0
E _"�X =

s

�= "
2

& ds.

Applying Itô formula, it is easy to check that there is a constant C such
that \=�1.

E _"�X =
t

�= "
2

&�C+CE _:
i
|

t

0 "_i (X =
s)+=_$i (X =

s)
�X =

s

�= "
2

ds&
+CE _:

j
|

t

0 "_~ $j ( =
s)

�X =
s

�= "
2

ds&
�C \1+|

t

0
E _"�X =

s

�= "
2

& ds+ .

Another application of the Gronwall lemma completes the proof. K
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