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Abstract

Curvature-driven flows have been extensively considered from a deterministic point of view.

Besides their mathematical interest, they have been shown to be useful for a number of

applications including crystal growth, flame propagation, and computer vision. In this paper, we

describe a random particle system, evolving on the discretized unit circle, whose profile converges

toward the Gauss–Minkowsky transformation of solutions of curve-shortening flows initiated by

convex curves. Our approach may be considered as a type of stochastic crystalline algorithm.

Our proofs are based on certain techniques from the theory of hydrodynamical limits.
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1. Introduction and statement of results

1.1. Curvature-driven flows

Let Cðp; tÞ : S1 � ½0;TÞ/R2 be a family of embedded curves where t parameterizes
the family and p parameterizes each curve. In this paper, we will consider stochastic
interpretations of certain curvature-driven flows, i.e. starting from an initial embedded
curve C0ðpÞ we consider the solution (when it exists) of an equation of the form

@Cðp; tÞ
@t

¼ V̂ðkðp; tÞÞN; Cð�; 0Þ ¼ C0ð�Þ; ð1:1Þ

where kðp; tÞ denotes the curvature andN denotes the inner unit normal of the curve

Cð�; tÞ at p: Of particular interest is the case in which V̂ðxÞ ¼ 7xa:

The case V̂ðxÞ ¼ x corresponds to the Euclidean curve-shortening flow [7] while

V̂ðxÞ ¼ x1=3 corresponds to the affine curve shortening, which is of strong relevance
in computer vision and image processing [14]. The literature on these flows is
extensive, for a recent review see [5].
We should note that these latter flows are particularly important since they are

gradient flows. Indeed, for a ¼ 1 the equation may be shown to be direction in which
curve length is shrinking as fast as possible using only local information. The
equation is also a geometric heat equation since it may be written in terms of the
Euclidean arc length ds as

@C

@t
¼ @2C

@s2
:

Similar remarks apply to the case a ¼ 1
3
since here area is shrinking as fast as possible

with respect to affine arc length, and one may formulate the flow as an affine

invariant heat equation by taking the two derivatives with respect to the affine
invariant arc length [14]. Since in both cases, we get gradient flows and resulting heat
equations, a stochastic interpretation seems quite natural.
Since we will be dealing with convex curves in this paper, we employ the standard

parameterization via the Gauss map, that is fixing p ¼ y; the angle between the
exterior normal to the curve and a fixed axis. It is well known that the Gauss map

can be used to map smooth convex curves Cð�Þ into positive functions mð�Þ on S1

such that
R

S1
e2piymðyÞ dy ¼ 0; and that this map can be extended to the Gauss–

Minkowsky bijection between convex curves with Cð0Þ ¼ 0 and positive measures on
S1 with zero barycenter; see [4, Section 8] for details. We denote byM0

þ the latter set

of measures.
Under this parameterization, a convex curve CðyÞ can be reconstructed from a

mAM0
þ by the formula

CðyÞ ¼
Z y

0

e2piYmðdYÞ; ð1:2Þ
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using linear interpolation over jumps of the function CðyÞ: Further, whenever m
possesses a strictly positive density mðyÞ dy then the curvature of the curve at y is
kðyÞ ¼ 1=mðyÞ:
Another useful property in working with measures mAM0

þ is that the evolution of

the density mð�Þ takes a particularly simple form: indeed, one gets (see e.g. [16,
Eqs. (1.1), (1.2)])

@mðt; yÞ
@t

¼ 	@2Vðmðt; yÞÞ
@y2

	 Vðmðt; yÞÞ; VðxÞ :¼ V̂ð1=xÞ: ð1:3Þ

There are a number of interesting special cases. For example, when V̂ðxÞ ¼ 	x	1

gives the linear evolution

mt ¼ myy þ m:

In this case, we may separate variables as in the usual analysis of the heat equation
and see that as t-N; mðy; tÞ goes to constant, and thus the initial curve
asymptotically approaches a circle (of infinite radius) [12]. Hence, for this curvature-
driven flow there is no blowup. (See also [1] for various results about expanding

flows.) For V̂ ¼ 1; the equation becomes

mt ¼ 	1

which has solution

mðt; yÞ ¼ 	t þ mð0; yÞ:

Thus, here we get blowup in finite time (for the curve) when t ¼ mð0; yÞ:
In general, for V̂ðxÞ ¼ xa; aX0; Eq. (1.3) becomes

@mðt; yÞ
@t

¼ 	@2m	aðt; yÞ
@y2

	 m	aðt; yÞ ð1:4Þ

which is defined up to a finite time, at which singularities may develop. For a ¼ 1; at
the blowup time the curve has shrunk to a ‘‘circular point’’ (see [7]), for a ¼ 1

3
it has

shrunk to an ‘‘ellipsoidal-shaped’’ point (see [14]), whereas for ao1
3
singularities may

develop earlier. Indeed, in this regime, the aspect ratio of the evolving curve goes to
infinity as the curve shrinks [2, Theorem 2] for a generic initial curve. The regime

aAð1
3
; 1Þ has been considered in [1,15], with results similar to those of a ¼ 1: Since for

aX0; the length of the evolving curve decreases, we will refer to flows with speed
functions of the form V̂ðxÞ ¼ xa; aX0 as curve-shortening flows.

1.2. Stochastic approximations

Our interest is in constructing stochastic approximations to the solutions of
Eqs. (1.4). Approximations corresponding to polygonal curves have been discussed
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in the literature under the name ‘‘crystalline motion’’, see [16] for a description
of recent results and references. Our approach is different and can be thought of
as a stochastic crystalline algorithm: we will construct a stochastic particle

system whose profile defines an atomic measure on S1; such that the corresponding
curve is a convex polygon. Applying tools from hydrodynamic limits, we then
prove that the (random) evolution of this polygonal curve converges, in the limit
of a large number of particles, to curve evolution under the curve-shortening
flow. This approach is related in spirit but not in techniques to recent work on
particle systems which approximate the non-linear filtering equations; see [6] and
references therein.
Our work is motivated by the fact (see [17]) that the uniform measure on the

(finite) set of convex polygons of area bounded by 1 which encircle the origin and

possesses vertices on the lattice n	1Z2 satisfies a large deviation principle with rate
function related to the affine length of curves. This suggests that natural (random)
dynamics for these polygons should be related to evolution according to affine curve

shortening, i.e. to solutions of (1.4) with a ¼ 1
3
: The system we construct here is a first

step in the study of this relationship.
We conclude this introduction by describing a particular case of our general result

Theorem 3: fix e40; consider the discrete torus TN and, at time 0, put at each site i;
Z0ðiÞ particles. Evolve the configuration Ztð�Þ in time such that each particle at site i

jumps to one of its neighbors at rate e	2N2 if ZtðiÞ ¼ 1 and e	1N2=ZtðiÞ otherwise,
dies at rate e	2 if ZtðiÞ ¼ 1; and gives birth at rate e	2=2 if ZtðiÞ ¼ 2: Define the
(random) measure me;Nt ¼ N	1P

iATN
ZtðiÞdi=N on S1; add (at most two) atoms at

0; p;7p=2 to create a %me;Nt with zero barycenter, and construct from that measure a
curve CN;eðt; �Þ as explained in (1.2). Then, if CN;eð0; �Þ converges as N-N to a

smooth strictly convex curve C0ð�Þ; then as first N-N and then e-0 it holds that
CN;eðt; �Þ converges (in Hausdorff distance, say) to the solution of the Euclidean
curve shortening (1.1) with a ¼ 1:
The structure of this paper is as follows: Section 2 presents some approximation

results for quasilinear parabolic equations and their relation to curve shortening.
Section 3 introduces our particle system, states the general hydrodynamic limit result
Theorem 2 which is at the heart of our approach, states the main curve convergence
result Theorem 3, and provides a family of stochastic evolutions which satisfy our
assumptions and correspond to curve-shortening equations with 1=a integer. Finally,
Section 4 presents the proofs of our claims.

2. PDE approximations

We present in this section, a general result concerning the existence and unique-
ness of a certain class of quasilinear parabolic equations, and show how such equa-
tions are approximations of the curve-shortening equations described above.
Let F;V :Rþ/R satisfy the following:
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Assumption A. (A.1) FAC3ðRþÞ; VAC1ðRþÞ:
(A.2) For every L40 there exist constants cL; dL40 such that

min
xA½0;L


F0ðxÞXcL; max
xA½0;L


jF00ðxÞjpdL:

(A.3) Vð�Þ is bounded and Vð0ÞX0:

Define the operator L :C1;2ðRþ � S1Þ/CðRþ � S1Þ as

Lrðt; xÞ ¼ 	@trðt; xÞ þ 1
2
@xxFðrÞðt; xÞ þ Vðrðt; xÞÞ: ð2:1Þ

The basic existence and uniqueness result alluded to above is the following (classical)
proposition, whose proof is given for completeness in the appendix.

Proposition 1. Suppose F;V satisfy Assumption A, and let mð�ÞAC2þbðS1Þ; for some

1Xb40; be a strictly positive function. Then there exists a unique solution

rAC2þbðS1Þ to the equation

Lrðt; xÞ ¼ 0; rð0; xÞ ¼ mðxÞ: ð2:2Þ

Further, rðt; xÞ is strictly positive.

Note that the curve-shortening flow (1.4) is not covered by Proposition 1, for the
functions VðxÞ ¼ FðxÞ ¼ 	x	a do not satisfy Assumption A (and indeed, the curve-
shortening flow does possess a finite blowup time, contrary to the conclusion of
Proposition 1). We thus wish to approximate this flow, e.g. by using functions of the

form Fa;eðxÞ ¼ 1=e	 1=ðx þ e1=aÞa and Va;eðxÞ ¼ 	x=ðx þ e1=aÞaþ1 (see Section 3.3).
We thus establish next a convergence result for solutions of quasilinear parabolic
equations that approximate curve-shortening equations. In what follows, set

R0þ ¼ ð0;NÞ:

Theorem 1. Suppose functions FAC2ðR0þÞ; VAC1ðR0þÞ and mAC2þbðS1Þ are given

such that mð�Þ is strictly positive and (2.2) holds on ½0;TÞ with r strictly positive. Let

Fe;Ve satisfy Assumption A and assume that F0
e;F

00
e ;Ve converge uniformly on compact

subsets of ð0;NÞ to F0;F00;V : Let Le denote the operator L with the functions Fe;Ve

substituted for the functions F;V ; and let reðt; xÞ satisfy Lereðt; xÞ ¼ 0; reð0; xÞ ¼
mðxÞ: Then, for any d40;

lim sup
e-0

sup
ðt;xÞA½0;T	d
�S1

reðt; xÞ
rðt; xÞ ¼ lim sup

e-0
sup

ðt;xÞA½0;T	d
�S1

rðt; xÞ
reðt; xÞ ¼ 1: ð2:3Þ

For the proof, we refer to the appendix. Note that in Theorem 1, we did not assume
that F;V satisfy Assumption A. On the other hand, the existence and uniqueness of
reðt; xÞ is assured by Proposition 1.
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3. Particle systems, hydrodynamical limits, and approximate curvature flows

We construct in this section the particle systems alluded to above, prove their
hydrodynamical limits, and relate them to approximate curvature flows.

3.1. Birth and death zero range particle systems and hydrodynamic limits

Let TN ¼ Z\NZ denote the discrete torus. Let g :N-Rþ (the jump rate, with
gð0Þ ¼ 0), b :N-Rþ (the birth rate), d :N-Rþ (the death rate, with dð0Þ ¼ 0) be
given, and define the Markov generator on the particle configuration EN ¼ NTN by

ðLNf ÞðZÞ ¼ N2ðL0f ÞðZÞ þ ðL1f ÞðZÞ; fACbðENÞ;

where

ðL0f ÞðZÞ ¼ 1
2

X
iATN

gðZðiÞÞ½f ðZi;iþ1Þ þ f ðZi;i	1Þ 	 2f ðZÞ
;

ðL1f ÞðZÞ ¼
X
iATN

½bðZðiÞÞ½f ðZi;þÞ 	 f ðZÞ
 þ dðZðiÞÞ½f ðZi;	Þ 	 f ðZÞ

;

and

Zi;i71ð jÞ ¼
Zð jÞ þ 1; j ¼ i71; ZðiÞa0;
Zð jÞ 	 1; j ¼ i; ZðiÞa0;
Zð jÞ; else

8><>: ;

Zi;þð jÞ ¼
Zð jÞ þ 1; j ¼ i;

Zð jÞ; else

	
Zi;	ð jÞ ¼

Zð jÞ 	 1; j ¼ i; ZðiÞ40;
Zð jÞ; else:

	

In words, under LN ; each particle at location i jumps to one of its neighboring

locations at rate N2gðZðiÞÞ=ZðiÞ; dies at rate dðZðiÞÞ=ZðiÞ; and a new particle is created
at location i with rate bðZðiÞÞ: Thus, we deal here with zero range processes in the
presence of births and deaths.

We use SN
t to denote the associated Markov semigroup, and we denote by mt;N the

law of the process at time t; with initial law m0;N ; under this Markovian semigroup.
We also use mN to denote the law of the trajectory of the process.
In order to state our main limit result, we need to introduce the appropriate

equilibrium measure, as in [9, Chapter 2.3]. Define Z :Rþ-Rþ,fþNg by ZðjÞ :
¼
P

k
jk

gðkÞ!; where gðkÞ! ¼ gð1Þ?gðkÞ and gð0Þ! ¼ 1: Set Dg ¼ fjARþ: ZðjÞoNg;
and j� ¼ supfj: jADgg: For any jADg; we define the probability measure %pj
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on N by

%pjðkÞ ¼
jk

gðkÞ!ZðjÞ;

and set RðjÞ :¼ j
Z0ðjÞ
ZðjÞ ;jADg (see [9, pp. 28–31] for background).

Throughout this section, we always make the following hypotheses on gð�Þ:

Assumption B. (B.1) infkX1 gðkÞ40; and lim supk-N

gðkÞ
k

¼ 0:
(B.2) ZðjÞsjsj�N:

(B.3) There exists a constant C1oN such that lim supk-N
½gðkÞbðk 	 1Þ 	 bðkÞ þ

dðkþ1Þ
gðkþ1Þ 	 dðkÞ
pC1 and supkjbðkÞjpC1; supkjdðkÞjpC1:

The following basic properties of %pj; proved in [9, pp. 28–31], are crucial in the

sequel.

Lemma 1. Let Assumption (B.1) hold. Then,

(a) j�40;RðjÞsjsj�N; and for each joj� there exists a yðjÞ40 such that %pj

possesses exponential moments with parameter yðjÞ:
(b) Set FðaÞ ¼ R	1ðaÞ and pa ¼ %pFðaÞ: Then, Fð�Þ is a smooth function with strictly

increasing derivative, F0ð0ÞAð0;NÞ; and

EpaðXÞ ¼ a; EpaðgðXÞÞ ¼ FðaÞ:

(c) Set na ¼ p#Z
a and let na;N denote the restriction of na to TN : Then na;N is reversible,

and hence invariant, for the Markov generator LN
0 :

In the sequel, for any function h defined on N; we set h̃ðaÞ :¼ EpaðhðXÞÞ: In
particular, by Lemma 1, g̃ðaÞ ¼ FðaÞ: We need below the following assumption on
the initial law of our Markov evolution:

Assumption C. There exists a d40 and an mAC2þdðS1Þ strictly positive such that

1

N
H m0;N

YN	1

i¼0
p

mð i
N
Þ

�����
! 

N-N
���! 0:

Set

VðaÞ ¼ VþðaÞ 	 V	ðaÞ :¼ b̃ðaÞ 	 d̃ðaÞ:
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Let rðt; xÞ : ½0;T 
 � S1/Rþ denote a C1;2þd strictly positive solution of the PDE

@trðt; xÞ ¼ 1
2
@xxFðrÞðt; xÞ þ VðrÞðt; xÞ; rð0; xÞ ¼ mðxÞ: ð3:1Þ

(When Assumption B is in force, such a solution exists and is unique by

Proposition 1 above since N4F0ð�Þ40 and Vð�Þ is a smooth bounded
function). We are now ready to state the hydrodynamic limit result for the
laws mt;N :

Theorem 2. Let Assumptions B and C hold. Then, for any function GACðS1Þ; any

d40; and any tA½0;T 
;

lim
N-N

mt;N Z:
1

N

X
iATN

ZðiÞG i

N

� �
	
Z

S1
GðxÞrðt; xÞ dx

�����
�����4d

( )
¼ 0:

Remark. We note that in the terminology of [9], g satisfies a SLG assumption but
does not satisfy the FEM assumption and is not attractive. This requires some
additional work in deriving the hydrodynamic limits.

3.2. Stochastic curve-shortening convergence

We begin by explicitly constructing random polygons from particle configurations.

Each particle configuration Zð�Þ defines a positive measure on S1 by mZ ¼P
kATN

ZðkÞd2pk=N : Unfortunately, this measure does not possess necessarily a zero

barycenter, and thus does not correspond a priori to a closed convex curve. To
remedy this situation, set

bZ ¼ bRZ þ ibIZ ¼
X

kATN

e2pk=NZðkÞ;

and define

%mZ ¼ mZ þ jbRZ jdp=2þðp=2ÞsignðbRZ Þ þ jbIZjd	ðp=2ÞsignðbIZÞ:

Then %mZAM0
þ; and it defines a curve by a linear interpolation between the jump

points of the function CZðyÞ ¼
R y
0 e2piY %mZðdYÞ:

Fix next a40; consider the functions FaðxÞ ¼ 	x	a; VaðxÞ ¼ 	x	a; and define
the operator La as in (2.1). Fix an m satisfying Assumption C, and let ra denote the
solution of (2.2) with operator La; with blowup time Ta; and associated
curve Caðt; yÞ: Let ga;e; ba;e; da;e satisfy Assumption B, set Fa;e and Va;e as in

Section 3.1. The following assumption is needed in order to relate the particle system
with the curve-shortening flow:
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Assumption D. (D.1) Fa;e;Va;e satisfy Assumption A.

(D.2) F0
a;e;F

00
a;e;Va;e converge uniformly on compact subsets of ð0;NÞ to

F0
a;F

00
a ;Va:

Our main result is the following:

Theorem 3. Let CN
a;e :Rþ � S1/Rþ denote the curve corresponding to the particle

system defined above. Fix d; d040: Then,

lim
e-0

lim sup
N-N

P sup
ðt;yÞA½0;Ta	d
�S1

jCN
a;eðt; yÞ 	 Caðt; yÞj4d0

 !
¼ 0: ð3:2Þ

If further Caðt; yÞ-t-Ta0; Caðt; yÞ :¼ 0 for t4Ta; and there exists a z0 ¼ z0ðaÞ such

that F0
a;eðzÞX0; Va;eðzÞo0 for all 0ozoz0; then Ta 	 d in (3.2) can be replaced by any

deterministic constant T40:

Proof. Eq. (3.2) is a straightforward consequence of Theorems 1 and 2, the fact that

the function e2piy is continuous, and the regularity of Caðt; �Þ: To see the second part
of the claim, let re;aðt; xÞ denote the solution of (3.1) with the functions Fa;e and Va;e;

and set ma;eðtÞ :¼ maxxAS1 ra;eðt; xÞ:We claim first that there exists a d1 and an e0 such
that for all eoe0;

ma;eðt0Þod1; some t0 ) ma;eðtÞoma;eðt0Þod1; 8t4t0: ð3:3Þ

This implies the second part of the claim since by Theorem 2,

lim sup
N-N

P sup
ðt;yÞA½0;T 
�S1

jCN
a;eðt; yÞ 	 Ca;eðt; yÞj4d0

 !
¼ 0

while lime-0 limt-Ta ma;eðtÞ ¼ 0:
To see (3.3), note that by the assumptions, one may find a e0 and a d1 such that

8eoe0; 0ozod1: Va;eðzÞo0;F0
a;eðzÞX0:

Suppose (3.3) does not hold. Then there exists a t1Aðt0; tÞ; s1AS1 with
@tra;eðt1; s1Þ ¼ 0; @xra;eðt1; s1Þ ¼ 0; @xxra;eðt1; s1Þp0 while Vðra;eðt1; s1ÞÞo0; contra-
dicting (3.1). &

Remark. Note that for Theorem 3 we have that Caðt; yÞ-t-Ta0 when aA½1
3
; 1
:
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3.3. Approximate curvature flows

We now present different candidates for the functions b; d; g defining the particle
systems of Section 3.1. The first two relate to an approximate version of the
Euclidean curvature flow, while the last one relates to a general curve-shortening
flow of parameter a with 1=a integer. Throughout, e40 is a fixed parameter, and we
set WðjÞ ¼ VðRðjÞÞ:
I. Approximate Euclidean curvature flow. Set

Fe;1ðrÞ ¼
1

e
	 1

r þ e
:

Then, Re;1ðjÞ ¼ eð1=ð1	 ejÞ 	 1Þ; and Ze;1ðjÞ ¼ ð1	 ejÞ	e: Expanding, one finds
that

ge;1ð1Þ ¼ e	2; ge;1ðkÞ ¼
k

eðk 	 1þ eÞ; kX2: ð3:4Þ

Choosing now Ve;1ðrÞ ¼ 	r=ðr þ eÞ2; one may compute the functions b; d by noting

that with We;1ðjÞ ¼ Ve;1ðRe;1ðjÞÞ ¼ 	jð1	 ejÞ; it must hold that

We;1ðjÞ ¼ 	jþ ej2 ¼ 1

Ze;1ðjÞ
XN
k¼0

ðbe;1ðkÞ 	 de;1ðkÞÞ
jk

ge;1ðkÞ!
:

Expanding, one finds that a possible choice for the birth and death rates is

be;1ð0Þ ¼ be;1ð1Þ ¼ 0; be;1ðkÞ ¼
ð1	 eÞk

eðeþ k 	 1Þðeþ k 	 2Þ; kX2 ð3:5Þ

and

de;1ð0Þ ¼ 0; de;1ð1Þ ¼ e	2; de;1ðkÞ ¼ 0; kX2: ð3:6Þ

Note that for fixed e40; the coefficients ge;1ð�Þ; 1=ge;1ð�Þ; be;1ð�Þ; de;1ð�Þ are uniformly
bounded, and hence satisfy Assumption B.
II. A simpler approximate Euclidean curvature flow. The jump rate, birth and death

coefficients described above suggest a further approximation of the Euclidean
curvature flow: Set

%ge;1ð1Þ ¼ e	2; %ge;1ðkÞ ¼ e	1k=ðk 	 1Þ; kX2;

%be;1ð2Þ ¼ 2e	2; %be;1ðkÞ ¼ 0; ka2;

%de;1ð1Þ ¼ e	2; %de;1ðkÞ ¼ 0; ka1: ð3:7Þ
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Note that the coefficients in (3.7) are globally bounded, and hence satisfy

Assumption B. Further, one finds that %Ze;1ðjÞ ¼ 1	 e logð1	 ejÞ; and thus that

%Re;1ðjÞ ¼
e2j

ð1	 ejÞð1	 e logð1	 ejÞÞ:

Defining %Fe;1ðrÞ ¼ %R	1
e;1 ðrÞ; one sees that again, for e small, %Fe;1ðrÞBe	1 	 1=r; in the

sense that for each r040;

lim sup
e-0

sup
r4r0

%Fe;1ðrÞ 	
1

e
þ 1

r

���� ���� ¼ 0:
One further notes that

%F0
e;1ðrÞ ¼

1

r2

e2 %F2e;1ðrÞ
1	 e2 %Fe;rðrÞ 	 e logð1	 e %Fe;1ðrÞÞ

;

concluding that

lim sup
e-0

sup
r4r0

%F0
e;1ðrÞ 	

1

r2

���� ���� ¼ 0; lim sup
e-0

sup
r4r0

%F00
e;1ðrÞ þ

2

r3

���� ���� ¼ 0:
Further, recalling the definition %We;1ðjÞ ¼ %Ve;1ð %Re;1ðjÞÞ; one finds that

%We;1ðjÞ ¼ 	 %Re;1ðjÞðe	1 	 jÞ2;

and hence, %Ve;1ðrÞ ¼ 	rð1	 e %Fe;1ðrÞÞ2=e2; implying by the above that

lim sup
e-0

sup
r4r0

%Ve;1ðrÞ þ
1

r

���� ���� ¼ 0:
III. An approximate curve-shortening flow. Fix L :¼ 1=a an integer, and set

Fe;aðrÞ ¼
1

e
	 1

ðr þ eLÞa:

Then, Re;aðjÞ ¼ eLð1=ð1	 ejÞL 	 1Þ:We also fix Ve;aðrÞ ¼ 	r=ðr þ eLÞ1þa; and hence

1

Ze;a
ðjÞ

XN
k¼0

jkðbe;aðkÞ 	 de;aðkÞÞ
ge;aðkÞ!

¼ 1
e
ðð1	 ejÞLþ1 	 ð1	 ejÞÞ ¼ 1

e
PaðejÞ;

where Pa is a polynomial of degree L þ 1 in j: Expanding, one finds that

be;aðkÞ 	 de;aðkÞ ¼
Xk

c¼1
dcec	1ge;aðk 	 cþ 1Þ?ge;aðkÞ; ð3:8Þ
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where

dc ¼
0; c ¼ 0;
	L; c ¼ 1;
ðLþ1ÞL?ðLþ2	cÞð	1Þc

c! ; cX2;

8><>: ð3:9Þ

and one notes that the sum in (3.8) is over at most L þ 1 terms since L is an
integer and thus dc ¼ 0 for c4L þ 1: It thus only remains to compute the functions
ge;aðkÞ; a task considerably more involved than in the Euclidean case. Write
logZe;aðjÞ ¼

P
N

c¼1acjc; with ac ¼ LðL þ 1Þ?ðL þ c	 1ÞecþL=cc!: Expanding

Ze;aðjÞ ¼
P

N

k¼0tkjk; it holds that ge;aðkÞ ¼ tk	1=tk; with

tk ¼
X
lAk

1

jlj!
Yjlj
i¼1

ali
; ð3:10Þ

where the summation is over the set Nk of all partitions l ¼ ðl1;y; ljljÞ of k; i.e.

tuples of integers with l1Xl2X?XljljX1 such that
P

li ¼ k: We now have

Lemma 2. There exist constants ce;a; Ce;a such that for all k;

ce;apge;aðkÞpCe;a:

Due to Lemma 2 and (3.8) (recall L is an integer!), the functions be;að�Þ and de;að�Þ are
also uniformly bounded, and Assumption B holds for the corresponding particle
system.
We conclude this paragraph with

Proof of Lemma 2. Since for lANk it holds that
P

li ¼ k; we have that for kX2;

ge;aðkÞ ¼
tk	1
tk

¼ 1
e

Ek	1ð 1jlj!
Qjlj

i¼1 Qe;aðliÞÞ

Ekð 1jlj!
Qjlj

i¼1 Qe;aðliÞÞ
Nk	1
Nk

;

where Nk ¼ jNkj; Ek denotes the uniform measure overNk and Qe;að�Þ is a rational
function; hence,

sup
nAN

Qe;aðn þ 1Þ
Qe;aðnÞ

oN; sup
nAN

Qe;aðnÞ
Qe;aðn þ 1ÞoN:

Construct an injection I of Nk	1 into a subset of Nk by increasing the first
component l1X1 of l by 1; i.e. Iðl1;y; ljljÞ ¼ ðl1 þ 1;y; ljljÞ: In particular, I
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leaves jlj unchanged. Then,

ge;aðkÞp
1

e

P
Nk	1

1
jlj!Qe;aðl1Þ

Qjlj
i¼2 Qe;aðliÞP

Nk	1
1
jlj!Qe;aðl1 þ 1Þ

Qjlj
i¼2 Qe;aðliÞ

p
1

e
sup
nAN

Qe;aðnÞ
Qe;aðn þ 1Þ;

yielding the claimed upper bound on ge;að�Þ: To see the complementary lower bound,
for any ðl1;y; ljljÞANk; set jl such that l1 ¼ l2 ¼ ? ¼ ljl4ljlþ1; with jl ¼ jlj
if l1 ¼ ? ¼ ljlj: Construct a map J from Nk to Nk	1 by reducing the ljl part by

one, i.e.

Jðl1;y; ljljÞ ¼ ðl1;y; ljl 	 1; ljlþ1;y:

Note that the map J is two to one. Since jJðlÞjpjlj; we have by an argument as
above that

ge;aðkÞX
1

2emaxð1;Qe;að1ÞÞ
inf
nAN

Qe;aðn 	 1Þ
Qe;aðnÞ

;

completing the proof of the complementary lower bound. &

Remark. In the case of a ¼ 1
3
(affine curve shortening [14]), one checks that

ge;1=3ðkÞp1=e:

4. Proof of Theorem 2

As mentioned above, the strategy parallels that of the proof of the standard
hydrodynamic limit for zero range processes, as described in [9], with some
additional elements, adapted from [11], due to the presence of birth and death events.
Set nrðt;�Þ;N :¼ #iATN

n
rðt; i

N
Þ: The main step in the proof of Theorem 2 consists of

establishing

Proposition 2. Let Assumptions B and C hold. Then,

lim sup
N-N

1

N
HðmN

t jnrðt;�Þ;NÞ ¼ 0:

Indeed, let A denote the event

A ¼ Z:
1

N

X
iATN

ZðiÞG i

N

� �
	
Z

S1
GðxÞrðt; xÞ dx

�����
�����4d

( )
:
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Note that, by an inequality of Varadhan, see [11, p. 367],

mN
t ðAÞp

1
N
log 2þ 1

N
HðmN

t jnrðt;�Þ;NÞ
1
N
logð1þ 1=nrðt;�Þ;NÞ

:

In view of Proposition 2, it thus suffices to show that

lim sup
N-N

1

N
log nrðt;�Þ;NðAÞo0: ð4:1Þ

The later estimate is a consequence of the product structure of nrðt;�Þ;N and of the
existence of exponential moments as described in part (a) of Lemma 1. Indeed, the
random variables Zi ¼ Zi 	 rðt; i=NÞ are, under nrðt;�Þ;N ; independent, centered, and
there exists a y� such that

sup
i;toT

Enrðt;�Þ;N ðey
�jZi jÞoN:

Therefore, for any GACðS1Þ; there exists a C40 such that for all aoa0ðGÞ;

sup
i;toT

Enrðt;�Þ;N ðeaGði=NÞZiÞ: ð4:2Þ

Thus, by Chebycheff’s inequality, we conclude that for every a40;

nrðt;�Þ;NðAÞpe	NadEnrðt;�Þ;N ðe
a
P

iATN
ZðiÞGði=NÞ	

R
S1

GðxÞrðt;xÞ dxÞ:

Approximating the last integral by a Riemann sum, we conclude that for every e40
we can find a N0ðeÞ such that for N4N0ðeÞ;

1

N
log nrðt;�Þ;NðAÞp 	 adþ eþ 1

N

X
iATN

log Enrðt;�Þ;N ðeaGði=NÞZiÞ

p 	 adþ eþ Ca2;

where the second inequality is due to (4.2). Choosing aod=C one deduces (4.1),
which concludes the proof of Theorem 2 modulo that we still need to prove
Proposition 2.
The proof of Proposition 2 is provided in Section 4.2, after we first present in

Section 4.1 a replacement lemma appropriate to our needs.

4.1. Replacement lemma

The main a priori estimate needed in our derivation is the following replacement
lemma (compare with [11, Proposition 2.1]).
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Proposition 3. Let Assumptions B and C hold. Suppose h :N-R is sublinear at

infinity, i.e. lim supk-N
hðkÞ=k ¼ 0: For kAN; set

ZkðiÞ ¼ 1

2k þ 1
X

jj	ijpk

Zð jÞ; VkðZÞðiÞ ¼
1

2k þ 1
X

ji	jjpk

hðZð jÞÞ 	 h̃ðZkðiÞÞ

������
������:

Then,

lim sup
k-N

lim sup
N-N

EmN

1

N

XN	1

i¼0

Z T

0

VkðZsÞðiÞ ds

( )
¼ 0: ð4:3Þ

Proof. Following the proof of [11, Lemma 2.2], we have that

Hðmt;N jn1;NÞpHðms;N jn1;NÞ þ sup
UACbðTN Þ;UX0

log

R
SN

t	sUðZÞn1;NðdZÞR
UðZÞn1;NðdZÞ

� �
: ð4:4Þ

Recall that

d

dt

Z
SN

t UðZÞn1;NðdZÞ ¼
XN	1

i¼0

Z
gðZðiÞÞbðZðiÞ 	 1Þ 	 bðZðiÞÞ
�

þ dðZðiÞ þ 1Þ
gðZðiÞ þ 1Þ 	 dðZðiÞÞ

�
UðZÞn1;NðdZÞ: ð4:5Þ

Hence, using Assumption (B.3), (4.4) and the Gronwall lemma, one concludes that
for any 0psptpT ;

Hðmt;N jn1;NÞpHðms;N jn1;NÞ þ ðt 	 sÞC2N: ð4:6Þ

We thus conclude that ft;N ¼ dmt;N=dn1;N exists.
Define, for any f defined on TN ; the Dirichlet form D0½�
; as

D0½f 
 ¼
1

4

X
iBj

ði;jÞATN�TN

gðZðiÞÞ½
ffiffiffiffiffiffiffiffiffiffiffiffi
f ðZi;jÞ

p
	

ffiffiffiffiffiffiffiffiffi
f ðZÞ

p

2n1;NðdZÞ:

A repeat of the proof of [11, Lemma 2.3] yields

N2D0
1

t

Z t

0

fs;N ds

� �
p
1

t
Hðm0;N jn1;NÞ þ C3N: ð4:7Þ
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Let

AN;C ¼ f N :NTN/Rþ j
Z

f NðZÞn1;NðdZÞ ¼ 1;
	
D0½f N 
pC

N
;

Z
Zð0Þf NðZÞn1;NðdZÞpC; f N is shift invariant

�
:

Copying the argument of [11, p. 370], it follows that Proposition 3 holds as soon as
one can show that for any C40;

lim sup
k-N

lim sup
N-N

sup
f NAAN;C

Z
VkðZÞð0Þf NðZÞn1;NðdZÞ ¼ 0: ð4:8Þ

Since on AN;C it holds that
R
Zð0Þf NðZÞn1;NðdZÞpC; it follows that (4.8) holds as

soon as for any a40;

lim sup
k-N

lim sup
N-N

sup
f NAAN;C

Z
f NðZÞ½VkðZÞð0Þ 	 aZkð0Þ
n1;NðdZÞp0: ð4:9Þ

Note that due to Assumption (B.2), it holds that Epað1XokÞ-a-N0 for any fixed k:

Using this and the sublinear assumption on h; it follows that lim supa-N
jh̃ðaÞj=a ¼ 0:

Using again the sublinearity of h; one concludes that

lim sup
Zkð0Þ-N

VkðZÞð0Þ
Zkð0Þ ¼ 0: ð4:10Þ

and hence, (4.9) holds as soon as we show that for any constant C040;

lim sup
k-N

lim sup
N-N

sup
f NAAN ;C

Z
f NðZÞVkðZÞð0Þ1Zkð0ÞoC0n1;NðdZÞ ¼ 0: ð4:11Þ

To prove (4.11), we proceed by conditioning. Let n1;k;N (respectively, nc
1;k;N ) denote

the restriction of n1;N to the (respectively, complement of the) box Bk :¼ ½	k; k
 (we
assume N42k þ 1 such that Bk is identified as part of the torus TN), and note that
n1;k;N ¼ n1;k because n1;N is a product measure. Set

f N
k ðxÞ ¼

Z
f NðZÞ1fZjBk

¼xgdnc
1;k;NðdZÞ

and define the Dirichlet form Dk on functions z
k :NBk-R by

Dk½zk
 ¼ 1
4

X
j;jþ1ABk

Z
gðxð jÞÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zkðx j;jþ1Þ

q
	

ffiffiffiffiffiffiffiffiffiffiffi
zkðxÞ

q
Þ2n1;kðdxÞ

þ 1
4

X
j;jþ1ABk

Z
gððxð j þ 1ÞÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zkðx jþ1;jÞ

q
	

ffiffiffiffiffiffiffiffiffiffiffi
zkðxÞ

q
Þ2n1;kðdxÞ
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then, as in [11, p. 372], using that Vk depends on Z only through its restriction to Bk;
it follows that

sup
f NAAN;C

Z
VkðZÞð0Þf NðZÞ1Zkð0ÞoC0n1;NðdZÞp sup

zkAAk
N;C

Z
VkðZÞð0ÞzkðZÞ1Zkð0ÞoC0n1;NðdZÞ;

where

Ak
N;C ¼ zk: zk

X0;

Z
zkðZÞn1;kðdZÞ ¼ 1;Dk½zk
p2k

N2
C;

Z
Zð0ÞzkðZÞn1;kðdZÞpC

	 �
:

Consider Ak
N;C as a set of densities, and hence identify it with a subset ofM1ðN2kþ1Þ:

Then, Ak
N;C is compact under the weak topology of M1ðN2kþ1Þ; and the lower

semicontinuity of Dk½�
 yields that

lim sup
N-N

sup
zkAAk

N;C

Z
VkðZÞð0ÞzkðZÞ1zkð0ÞoC0n1;kðdZÞ

p sup
zkAAk

0

Z
VkðZÞð0ÞzkðZÞ1Zkð0ÞoC0n1;kðdZÞ ¼: Ak;

where

Ak
0 ¼ zk: zk40;

Z
zkðZÞn1;kðdZÞ ¼ 1;Dk½zk
 ¼ 0;

Z
Zkð0ÞzkðZÞn1;kðdZÞpC

	 �
:

We thus need to prove that lim supk-N
Ak ¼ 0: Toward this end, we do not use the

argument in [11] but rather adapt [9, p. 89]. Indeed, let n j
1;K denote the law n1;k

conditioned on Zkð0Þ ¼ j � ð2k þ 1Þ: Then,

Akp sup
jpð2kþ1ÞC0

Z
VkðZÞð0Þn j

1;kðdZÞ: ð4:12Þ

Noting (4.10) and repeating verbatim the equivalence of ensemble argument in [9,
pp. 89–90], we conclude that lim supk-N

Ak ¼ 0; completing the proof of
Proposition 3. &

4.2. Relative entropy convergence: proof of Proposition 2

We adopt the relative entropy method, as described in detail in [9, Chapter 6].
We emphasize in this presentation the ingredients which differ from the derivation
there.
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Set cNðtÞ :¼ dnrðt;�Þ;N=dna;N ; a40 arbitrary. Repeating the computation in

[9, pp. 120–121], taking into account the birth–death rates, we conclude that

gt :¼
d

dt
HðmN

t jnrðt;�Þ;NÞ

p
X

xATN

Z
%F t;

x

N

� �
gðZðxÞÞ 	 F r t;

x

n

� �� �n
	 F0 r t;

x

N

� �� �
ZðxÞ 	 r t;

x

N

� �� �o
n1;NðdZÞ

þ
X

xATN

Z
dðZðxÞ þ 1Þ
gðZðxÞ þ 1ÞF r t;

x

N

� �� �
	 dðZðxÞÞ

� �
n1;NðdZÞ

þ
X

xATN

Z
bðZðxÞ 	 1Þ
Fðrðt; x

N
ÞÞ gðZðxÞÞ 	 bðZðxÞÞ

� �
n1;NðdZÞ

	
X

xATN

Z
ZðxÞ 	 r t;

x

N

� �� �F0 r t;
x

N

� �� �
Fðrðt; x

N
ÞÞ V r t;

x

N

� �� �
n1;NðdZÞ þ oðNÞ

¼: Iþ IIþ IIIþ IVþ oðNÞ;

where %Fðt; x
N
Þ ¼ DFðrðt;x

N
ÞÞ

Fðrðt;x
N
ÞÞ ; and where the oðNÞ term is uniform in a in compacts. Note

next that

1

ZðjÞ
XN
k¼0

dðk þ 1Þ
gðk þ 1Þ

jk

gðkÞ! ¼
1

j
E %pjðdÞ

and

1

ZðjÞ
XN
k¼1

bðk 	 1ÞgðkÞ jk

gðkÞ! ¼
1

j
E %pjðbÞ;

and thus gdð� þ 1Þ
gð� þ 1Þ
dð� þ 1Þ
gð� þ 1Þ

 !
ðaÞ ¼ V	ðaÞ

FðaÞ ; ð4:13Þ

ð gbð� 	 1Þgð�Þbð� 	 1Þgð�ÞÞðaÞ ¼ VþðaÞFðaÞ: ð4:14Þ

We next wish to replace functions depending on Z by functions depending on Zk:
Toward this end, note that by (4.6),

Hðmt;N jn1;NÞpC3N
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and hence, for any bounded test function bðxÞ;

Emt;N
bplog En1;N ðebÞ þ C3N:

Note next that for some g40;

lim sup
N-N

1

N
log En1;N e

g
P

iATN

ZðiÞ
 !

¼ log En1;N ðegZð0ÞÞoN:

Hence, by dominated convergence,

lim sup
N-N

sup
tA½0;T 


Emt;N

1

N

X
iATN

ZðiÞoN: ð4:15Þ

In particular, for any smooth test function cðxÞ; for each fixed k;

lim sup
N-N

X
xATN

Z
c

x

N

� �
½ZðxÞ 	 ZkðxÞ
mt;NðdZÞ ¼ 0 ð4:16Þ

with the convergence rate depending only on the modulus of continuity
of cð�Þ:
We next note that the functions gð�Þ; d

g
ð�Þ; bð� 	 1Þgð�Þ; bð�Þ satisfy the assumptions

of Proposition 2. Using the (uniform) space regularity of rðt; �Þ; the smoothness
(C2 property) of Fð�Þ assured by Lemma 1[(b)], and summation by parts using (4.16),
we conclude, using (4.13), that

gtp
X

xATN

Z
%F t;

x

N

� �
FðZkðxÞÞ 	 F r t;

x

N

� �� �n
	 F0 r t;

x

N

� �� �
ZkðxÞ 	 r t;

x

N

� �� �o
mt;NðdZÞ

þ
X

xATN

Z
V	ðZkðxÞÞ

F r t;
x

N

� �� �
FðZkðxÞÞ 	 1

24 35mt;NðdZÞ

þ
X
xAT

Z
VþðZkðxÞÞ FðZkðxÞÞ

Fðrðt; x
N
ÞÞ 	 1

� �
mt;NðdZÞ

	
X

xATN

Z
ZkðxÞ 	 r t;

x

N

� �� �F0

F
r t;

x

N

� �� �
V r t;

x

N

� �� �
mt;NðdZÞ

þ oðNÞ; ð4:17Þ

where the error term in (4.17) is uniform in tA½0; 1
:
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Rearranging the terms in (4.17), and setting Mða; bÞ ¼ FðaÞ 	 FðbÞ	
F0ðbÞða 	 bÞ; we get

gtp
X

xATN

Z
%F t;

x

N

� �
M ZkðxÞ; r t;

x

N

� �� �
mt;NðdZÞ

	
X

xATN

Z
V	ðZkðxÞÞ
FðZkðxÞÞ M ZkðxÞ; r t;

x

N

� �� �
mt;NðdZÞ

þ
X

xATN

Z
VþðZkðxÞÞ
Fðrðt; x

N
ÞÞ M ZkðxÞ; r t;

x

N

� �� �
mt;NðdZÞ

	
X

xATN

Z
V	ðZkðxÞÞ 	 V	 r t;

x

N

� �� �h i
ZkðxÞ 	 r t;

x

N

� �h i
� F0

F
r t;

x

N

� �� �
mt;NðdZÞ

	
X

xATN

Z
V	ðZkðxÞÞ
FðZkðxÞÞ

F0

F
r t;

x

N

� �� �
ZkðxÞ 	 r t;

x

N

� �h i
� F r t;

x

N

� �� �
	 FðZkðxÞÞ

h i
mt;NðdZÞ

	
X

xATN

Z VþðZkðxÞÞ 	 Vþ r t;
x

N

� �� �h i
Fðrðt; x

N
ÞÞ FðZkðxÞÞ 	 F r t;

x

N

� �� �� �
mt;NðdZÞ

þ oðNÞ :¼
Z X

xATN

X6
i¼1

Aiðx; ZÞmt;NðdZÞ þ oðNÞ; ð4:18Þ

where again the error term is uniform in tA½0;T 
; and we have used (4.13) to assert
that supx

V	
F ðxÞoN:

The proof of the following proposition follows the proof of [9, Proposition 6.1.6]
and is therefore omitted. Note that introducing the supremum over t in the statement

does not modify the proof due to the uniform bound on rðt; xÞ; tA½0;T 
; xAS1:

Proposition 4. Let Gð�; �; �Þ : ½0;T 
 � S1 � Rþ-Rþ be continuous, such that for some

C040

(a) supðt;uÞA½0;T 
�S1 Gðt; u; lÞpC0 þ C0l; lARþ;

(b) supðt;uÞA½0;T 
�S1

jl	rðt;uÞjod

Gðt; u; lÞpC0d
2:

Then, there exists a %g0 ¼ %g0ðC0Þ such that

lim sup
k-N

lim sup
N-N

sup
tA½0;T 


1

N
log Enrðt;�Þ;N exp %g0

X
xATN

Gðt;x; ZkðxÞÞ
( )

p0:
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Equipped with Proposition 4, let us complete the proof of Proposition 2. Indeed,
note that

X3
i¼1

Aiðx; ZÞpC0;1 M ZkðxÞ; r t;
x

N

� �� ���� ��� ð4:19Þ

while

X6
i¼4

Aiðx; ZÞpC0;2 ZkðxÞ 	 r t;
x

N

� ���� ���Q ZkðxÞ 	 r t;
x

N

� ���� ���� �
; ð4:20Þ

where Q is a smooth function, bounded by 1, with Qð0Þ ¼ 0; and we used the fact
that V	 is bounded which is assured by Assumption (B.3). Fixing %g1 small enough,
and with a term oðNÞ uniform in t;

gt 	 g0p oðNÞ þ 1

%g1

Z t

0

gs ds

þ 1

%g1

Z t

0

ds log Enrðt;�Þ;N exp %g1
X

xATN

X6
i¼1

Aiðx; ZÞ
( )" #

:

Using Proposition 4 and (4.19), (4.20), it follows that

lim sup
k-N

lim sup
N-N

sup
tA½0;T 


1

N
log Enrðt;�Þ;N exp %g1

X
xATN

X6
i¼1

Aiðx; ZÞ
( )" #

p0

and thus, Gronwall’s lemma yields that

lim sup
N-N

sup
tA½0;T 


gt

N
¼ 0: &

5. Conclusions and future research

In this paper, we formulated certain stochastic approximations to planar
shortening flows for convex curves. More precisely, we constructed a stochastic
particle system whose profile defines an atomic measure on the unit circle such that
the corresponding curve is a convex polygon. We then showed that the evolution of
this polygonal curve converges (in the limit of a large number of particles) to curve
evolution under the given curve-shortening flow.
We would like to suggest several possible research directions to extend

these results. First of all, one can consider evolutions of non-convex curves. More

precisely, it is known that for a ¼ 1; 1
3
a smooth non-convex embedded curve

becomes convex under the corresponding curve-shortening flow, and then converges

to a point of appropriate ‘‘shape’’ (circular for a ¼ 1 [8], and elliptical for a ¼ 1
3
[3]).
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It would be quite interesting to see if one could extend our stochastic framework to
non-convex curves in this setting.
Further, as alluded to above, our work here is partially motivated by the result

that the uniform measure on the set of convex polygons of area bounded by 1 which

encircle the origin and possesses vertices on the lattice n	1Z2 satisfies a large
deviation principle with rate function related to affine arc length [17]. Hence, we
believe that natural (random) dynamics for these polygons should be related to
evolution according to affine curve shortening. In our approach here, there does not

seem to be anything special about the exponent a ¼ 1
3
: Thus, more research is

necessary to see if one can indeed find ‘‘affine invariant’’ stochastic approximations
to the affine curve-shortening evolution.

Appendix. Proofs of Proposition 1 and Theorem 1

We begin by recalling the following maximum principle, which is a straightfor-
ward adaptation to the periodic setting of [13, Theorem 12, p. 187]:

Lemma A.1. Assume F;V satisfy Assumption A and let m1ð�Þ;m2ð�ÞAC2þbðS1Þ satisfy

m1pm2: Let riðt; xÞ satisfy rið0; xÞ ¼ miðxÞ; i ¼ 1; 2; and Lr1ðt; xÞpLr2ðt; xÞ; for all

tpT : Then, r1ðt; xÞpr2ðt; xÞ for ðt; xÞA½0;T 
 � S1:

The only issue preventing one from applying directly classical existence and

uniqueness results for quasilinear parabolic equations is the fact that F0ð�Þ is
not bounded away from 0 at infinity, and hence L is not a strictly parabolic operator.
To circumvent this difficulty, assume 0pm1pmðxÞpm2oN for some constants
mi; i ¼ 1; 2; and let miðtÞ satisfy the ODE

dmiðtÞ
dt

¼ VðmiðtÞÞ; mið0Þ ¼ mi: ðA:1Þ

Since V is Lipschitz, bounded and Vð0ÞX0; it holds that 0om1ðtÞpm2ðtÞpm2 þ
jjV jjt for all tX0: An application of Lemma A.1 then yields that any solution rðt; xÞ
of (2.2) satisfies 0om1ðtÞprðt; xÞpm2ðtÞ: Fix ToN and d40 such that

domintA½0;T 
m1ðtÞom2 þ jjV jjTo1=d; and set Fd be a smooth function with FdðuÞ ¼
FðuÞ for uA½d; 1=d
; such that minxARþðFdÞ0ðxÞ40: Let Ld denote the operator L of

(2.1) with Fd replacing F: By [10, Theorem 12.14], the equation Ldrdðt; xÞ ¼ 0;
rdð0; xÞ ¼ mðxÞ possesses a unique solution (the hypotheses of [10, Theorem 12.14]
are checked to hold for the operator Ld considered as an operator defined on

C1;2ð½0;T 
 � RÞ; with the initial condition m extended by periodicity to R; with the

resulting unique solution being periodic and defining uniquely a periodic solution rd

which then can be considered as defined on ½0;T 
 � S1). By Lemma A.1 and the

argument above, rdðt;xÞA½d; 1=d
 for tpT : Hence, rd satisfies (2.2), establishing the
claimed existence since T40 is arbitrary. The uniqueness follows by noting that any
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solution of (2.2) satisfies, by the above a priori bounds, that Fðrðt;xÞÞ ¼ Fdðrðt; xÞÞ
for tpT ; and hence is the (unique) solution of the equation Ldrdðt; xÞ ¼ 0:

Proof of Theorem 1. Fix gAð0; 1
 and set %rðt; xÞ ¼ rðt; xÞegt: A direct computation
yields that

Leð %rÞ ¼ ½@xxregtðF0ðrÞ 	 F0
eð %rÞÞ
 þ ½ðegt@xrÞ2ðe	gtF00ðrÞ 	 F00

e ð %rÞÞ


þ ½egtVðrÞ 	 Veð %rÞ
 þ g %r

¼: I1 þ I2 þ I3 þ g %r: ðA:2Þ

We can find a constant C ¼ CðdÞ40 independent of the values of g and e such that

min
ðt;xÞA½0;T	d
�S1

rðt; xÞ4 %rðt; xÞX1
C
; max

ðt;xÞA½0;T	d
�S1
rðt; xÞ3 %rðt; xÞpC;

max
ðt;xÞA½0;T	d
�S1

½j@xx %rðt; xÞj þ jF0ðrðt; xÞÞj þ jF0
eð %rðt; xÞÞj
pC:

One therefore concludes the existence of a constant C1 ¼ C1ðdÞ independent of e or g
such that

lim sup
e-0

max
ðt;xÞAð0;T	d
�S1

jI1 þ I2 þ I3j
s

pC1g:

Setting T1 ¼ ðT 	 dÞ41=2CC1; one concludes the existence of a function e0ð�Þ;
depending on C and the rate of convergence of F0

e;F
00
e ;Ve only, such that for all

eoe0ðgÞ;

0 ¼ Lereðt; xÞpLe
%rðt; xÞ; ðt; xÞA½0;T1
 � S1:

The maximum principle (Lemma A.1 above) then yields that for eoe0ðgÞ; and
tA½0;T1
; it holds that reðt; xÞpegtrðt; xÞ: Repeating the argument with gA½	1; 0Þ;
and noting that T1 does not depend on e; the conclusion of the theorem follows

on ½0;T1
 � S1: The extension to ½0;T 	 d
 � S1 is immediate by noting that
the constants C;C1 do not depend on e; and repeating the argument above
JðT 	 dÞ=T1n times. &
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