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Abstract

Curvature-driven flows have been extensively considered from a deterministic point of view.
Besides their mathematical interest, they have been shown to be useful for a number of
applications including crystal growth, flame propagation, and computer vision. In this paper, we
describe a random particle system, evolving on the discretized unit circle, whose profile converges
toward the Gauss—Minkowsky transformation of solutions of curve-shortening flows initiated by
convex curves. Our approach may be considered as a type of stochastic crystalline algorithm.
Our proofs are based on certain techniques from the theory of hydrodynamical limits.
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1. Introduction and statement of results
1.1. Curvature-driven flows

Let €(p,1): S' x [0, T)— R? be a family of embedded curves where ¢ parameterizes
the family and p parameterizes each curve. In this paper, we will consider stochastic
interpretations of certain curvature-driven flows, i.e. starting from an initial embedded
curve €o(p) we consider the solution (when it exists) of an equation of the form

8(6([7, Z) 5

o = V(x(p, 1))V, €(-,0) =%o(), (1.1)

where x(p, t) denotes the curvature and 4" denotes the inner unit normal of the curve
%(-,1) at p. Of particular interest is the case in which V(x) = +x”.

The case V(x) = x corresponds to the Euclidean curve-shortening flow [7] while
V(x) = x'/? corresponds to the affine curve shortening, which is of strong relevance
in computer vision and image processing [14]. The literature on these flows is
extensive, for a recent review see [5].

We should note that these latter flows are particularly important since they are
gradient flows. Indeed, for o = 1 the equation may be shown to be direction in which
curve length is shrinking as fast as possible using only local information. The
equation is also a geometric heat equation since it may be written in terms of the
Euclidean arc length ds as

o o
ot s

Similar remarks apply to the case o = % since here area is shrinking as fast as possible

with respect to affine arc length, and one may formulate the flow as an affine
invariant heat equation by taking the two derivatives with respect to the affine
invariant arc length [14]. Since in both cases, we get gradient flows and resulting heat
equations, a stochastic interpretation seems quite natural.

Since we will be dealing with convex curves in this paper, we employ the standard
parameterization via the Gauss map, that is fixing p = 0, the angle between the
exterior normal to the curve and a fixed axis. It is well known that the Gauss map
can be used to map smooth convex curves %(-) into positive functions m(-) on S!
such that [ e¥™m(0) d0 = 0, and that this map can be extended to the Gauss—
Minkowsky bijection between convex curves with #(0) = 0 and positive measures on
S! with zero barycenter; see [4, Section 8] for details. We denote by ,ﬂi the latter set
of measures.

Under this parameterization, a convex curve %(6) can be reconstructed from a
,ueg/%(i by the formula

%(0) = /0 ' "0 u(do), (1.2)
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using linear interpolation over jumps of the function %(0). Further, whenever u
possesses a strictly positive density m(60) d then the curvature of the curve at 6 is
k(0) = 1/m(0).

Another useful property in working with measures ue rﬂg is that the evolution of
the density m(-) takes a particularly simple form: indeed, one gets (see e.g. [16,
Egs. (1.1), (1.2)])

om(1,0) 9V (m(1,0))
ot - 892 - V(Wl(h 0))7 V(x)

V(1/x). (1.3)

There are a number of interesting special cases. For example, when V(x) = x|
gives the linear evolution

m; = myy + m.

In this case, we may separate variables as in the usual analysis of the heat equation
and see that as r— oo, m(0,f) goes to constant, and thus the initial curve
asymptotically approaches a circle (of infinite radius) [12]. Hence, for this curvature-
driven flow there is no blowup. (See also [1] for various results about expanding
flows.) For V= 1, the equation becomes

m; = -1
which has solution
m(t,0) = —t +m(0,0).

Thus, here we get blowup in finite time (for the curve) when ¢ = m(0, 6).
In general, for V(x) = x*, >0, Eq. (1.3) becomes
om(z,0) O*m=(t,0)

= m0) (1.4)

which is defined up to a finite time, at which singularities may develop. For o = 1, at
the blowup time the curve has shrunk to a “circular point” (see [7]), for « = % it has
shrunk to an “ellipsoidal-shaped’ point (see [14]), whereas for o <% singularities may
develop earlier. Indeed, in this regime, the aspect ratio of the evolving curve goes to
infinity as the curve shrinks [2, Theorem 2] for a generic initial curve. The regime
oE (%, 1) has been considered in [1,15], with results similar to those of o = 1. Since for
0>=0, the length of the evolving curve decreases, we will refer to flows with speed
functions of the form V(x) = x*, a0 as curve-shortening flows.

1.2. Stochastic approximations

Our interest is in constructing stochastic approximations to the solutions of
Eqgs. (1.4). Approximations corresponding to polygonal curves have been discussed
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in the literature under the name ‘“‘crystalline motion”, see [16] for a description
of recent results and references. Our approach is different and can be thought of
as a stochastic crystalline algorithm: we will construct a stochastic particle
system whose profile defines an atomic measure on S', such that the corresponding
curve is a convex polygon. Applying tools from hydrodynamic limits, we then
prove that the (random) evolution of this polygonal curve converges, in the limit
of a large number of particles, to curve evolution under the curve-shortening
flow. This approach is related in spirit but not in techniques to recent work on
particle systems which approximate the non-linear filtering equations; see [6] and
references therein.

Our work is motivated by the fact (see [17]) that the uniform measure on the
(finite) set of convex polygons of area bounded by 1 which encircle the origin and
possesses vertices on the lattice n~ 7> satisfies a large deviation principle with rate
function related to the affine length of curves. This suggests that natural (random)
dynamics for these polygons should be related to evolution according to affine curve
shortening, i.e. to solutions of (1.4) with oo = % The system we construct here is a first
step in the study of this relationship.

We conclude this introduction by describing a particular case of our general result
Theorem 3: fix ¢ >0, consider the discrete torus 7 and, at time 0, put at each site i,
1o(i) particles. Evolve the configuration #,(-) in time such that each particle at site i
jumps to one of its neighbors at rate e2N? if n,(i) = 1 and "' N?/n,(i) otherwise,
dies at rate &2 if #,(i) = 1, and gives birth at rate ¢2/2 if n,(i) = 2. Define the
(random) measure p°" = N‘IZ,GTNVI,(I')E,-/N on S', add (at most two) atoms at
0,7, +7/2 to create a " with zero barycenter, and construct from that measure a
curve ¥n.(t,-) as explained in (1.2). Then, if ¥y .(0,-) converges as N —» oo to a
smooth strictly convex curve €,(-), then as first N — co and then ¢—0 it holds that
%n.(t,) converges (in Hausdorff distance, say) to the solution of the Euclidean
curve shortening (1.1) with o« = 1.

The structure of this paper is as follows: Section 2 presents some approximation
results for quasilinear parabolic equations and their relation to curve shortening.
Section 3 introduces our particle system, states the general hydrodynamic limit result
Theorem 2 which is at the heart of our approach, states the main curve convergence
result Theorem 3, and provides a family of stochastic evolutions which satisfy our
assumptions and correspond to curve-shortening equations with 1/« integer. Finally,
Section 4 presents the proofs of our claims.

2. PDE approximations

We present in this section, a general result concerning the existence and unique-
ness of a certain class of quasilinear parabolic equations, and show how such equa-
tions are approximations of the curve-shortening equations described above.
Let &, V: R, — R satisfy the following:
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Assumption A. (A.1) e C3(R,), VeC'(R,).
(A.2) For every L>0 there exist constants ¢y, d; >0 such that

min ¥'(x)>c¢,, max |9"(x)|<d;.
X€E [O,L] xe [OﬁL]

(A.3) V() is bounded and ¥(0)>0.

Define the operator L: C'*(R, x §')— C(R, x S') as
Lot x) = —04p6,) + 0 (p)(1.3) + V(o(t, ). 1)

The basic existence and uniqueness result alluded to above is the following (classical)
proposition, whose proof is given for completeness in the appendix.

Proposition 1. Suppose @,V satisfy Assumption A, and let m(-) e C*F(S"), for some
1=p>0, be a strictly positive function. Then there exists a unique solution
pe C**F(SY) to the equation

Lo(t,x) =0, p(0,x)=m(x). (2.2)
Further, p(t,x) is strictly positive.

Note that the curve-shortening flow (1.4) is not covered by Proposition 1, for the
functions V' (x) = ®(x) = —x* do not satisfy Assumption A (and indeed, the curve-
shortening flow does possess a finite blowup time, contrary to the conclusion of
Proposition 1). We thus wish to approximate this flow, e.g. by using functions of the
form @, (x) = 1/e — 1/(x +&"/*)* and V,,(x) = —x/(x + &"/*)**" (see Section 3.3).
We thus establish next a convergence result for solutions of quasilinear parabolic
equations that approximate curve-shortening equations. In what follows, set
R% = (0, ).

Theorem 1. Suppose functions @€ C*(RY), Ve CY(R)) and me C**#(S') are given
such that m(-) is strictly positive and (2.2) holds on [0, T) with p strictly positive. Let
D, V, satisfy Assumption A and assume that @, @, V,, converge uniformly on compact
subsets of (0, 00) to @', @" V. Let L* denote the operator L with the functions &, V.,
substituted for the functions @,V and let p,(t,x) satisfy L°p,(t,x) =0, p,(0,x) =
m(x). Then, for any 6> 0,

. t, . t,
lim sup sup CAUR)) = lim sup sup (t, %)
im0 (1x)el0.T-o)xs' P(L,X e50 (rx)ef0,7-o)xs! Pe(lsX)

=1. (23)

For the proof, we refer to the appendix. Note that in Theorem 1, we did not assume
that @, I satisfy Assumption A. On the other hand, the existence and uniqueness of
p°(t, x) is assured by Proposition 1.
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3. Particle systems, hydrodynamical limits, and approximate curvature flows

We construct in this section the particle systems alluded to above, prove their
hydrodynamical limits, and relate them to approximate curvature flows.

3.1. Birth and death zero range particle systems and hydrodynamic limits
Let Ty = Z\NZ denote the discrete torus. Let g: N— R, (the jump rate, with

g(0) =0), b: N>R, (the birth rate), d :N—->R_ (the death rate, with d(0) = 0) be
given, and define the Markov generator on the particle configuration Ey = N7¥ by

(LN ) () = N (Lof )n) + (L1 )(n), [eCo(En),

where
(S ) =3 3 g0+ () = 2 ()],
ieTy
(L)) = > @I (") =f )] +d @) o) = f ()],
and

{Mﬁ+l,jzh ()

n(j), else

n(j), else.

In words, under ¥V, each particle at location i jumps to one of its neighboring
locations at rate N2g(n(i))/n(i), dies at rate d(1(i))/n(i), and a new particle is created
at location i with rate b(n(i)). Thus, we deal here with zero range processes in the
presence of births and deaths.

We use SV to denote the associated Markov semigroup, and we denote by ty y the
law of the process at time ¢, with initial law y y, under this Markovian semigroup.
We also use pV to denote the law of the trajectory of the process.

In order to state our main limit result, we need to introduce the appropriate

equilibrium measure, as in [9, Chapter 2.3]. Define Z: R, >R, u{+ 0} by Z(¢p) :

= Zkﬁ;!, where g(k)! = ¢g(1)---g(k) and g(0)! =1. Set 2, = {peR: Z(p)< w0},
and ¢* =sup{e: peZ,}. For any pe%,, we define the probability measure j,
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on N by

Z'(¢)
Z(9)
Throughout this section, we always make the following hypotheses on g(-).

and set R(p) = ¢ , €D, (see [9, pp. 28-31] for background).

Assumption B. (B.1) infj>; g(k) >0, and lim sup,_, ., @ =0.
(B.2) Z(@) 7 ¢ 0.
(B.3) There exists a constant C; < oo such that lim sup_, ., [g(k)b(k — 1) — b(k) +

) — d(k)] < Cr and supy|b(k)| < Cr, sup|d (k)| < Cr.

The following basic properties of j,, proved in [9, pp. 28-31], are crucial in the
sequel.

Lemma 1. Let Assumption (B.1) hold. Then,

(@) ¢*>0,R(Q) /o 00, and for each ¢ <¢@* there exists a 0(¢)>0 such that p,
possesses exponential moments with parameter 0(¢p).

(b) Set @(x) = R~ («) and p, = po(ny. Then, ®(-) is a smooth function with strictly
increasing derivative, ®'(0) € (0, o0 ), and

Ep(X) =0, Ep(9(X)) = @(2).

(c) Setv, = p®% and let v,y denote the restriction of v, to Ty. Then v, y is reversible,
and hence invariant, for the Markov generator LY.

In the sequel, for any function / defined on N, we set A(a) = E, (h(X)). In
particular, by Lemma 1, §(«) = ®(«). We need below the following assumption on
the initial law of our Markov evolution:

Assumption C. There exists a >0 and an me C>*°(S") strictly positive such that

| N-1
NH(“O,N g Pm(x‘/)) No o 0.

Set
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Let p(t,x): [0, T] x S'+— R, denote a C'?*? strictly positive solution of the PDE
Bip(t ) = W0uB(p)(13) + V() (1), p(0,x) = m(x). (1)

(When Assumption B is in force, such a solution exists and is unique by
Proposition 1 above since oo >®'(-)>0 and V(-) is a smooth bounded
function). We are now ready to state the hydrodynamic limit result for the
laws u, y:

Theorem 2. Let Assumptions B and C hold. Then, for any function Ge C(S'), any
0>0, and any te|0, T],
>5} =0.

Remark. We note that in the terminology of [9], g satisfies a SLG assumption but
does not satisfy the FEM assumption and is not attractive. This requires some
additional work in deriving the hydrodynamic limits.

li :
N1—I>nw /Jt.N{”I

% 3 n(i)G(%) - | Gt x

ieTy

3.2. Stochastic curve-shortening convergence

We begin by explicitly constructing random polygons from particle configurations.
Each particle configuration #(-) defines a positive measure on S' by Wy =
Zken (k)02nk/n- Unfortunately, this measure does not possess necessarily a zero
barycenter, and thus does not correspond a priori to a closed convex curve. To
remedy this situation, set

by =by+iby = > ™ Ny(k)

keTy

and define
Ay =y + |b;1R|5n/2+(n/2)sign(b,'f) + \bf7|5—<n/z)sign(b},)~

Then f, € M +» and it defines a curve by a linear interpolation between the jump

points of the function C,(8) = [i €€, (dO).

Fix next «>0, consider the functlons @, (x) = —x" V,(x) = —x"% and define
the operator L, as in (2.1). Fix an m satisfying Assumption C, and let p, denote the
solution of (2.2) with operator L,, with blowup time 7,, and associated
curve %,(t,0). Let gy, bye, dy, satisfy Assumption B, set ¢,, and V,, as in
Section 3.1. The following assumption is needed in order to relate the particle system
with the curve-shortening flow:
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Assumption D. (D.1) @,,, V, . satisfy Assumption A.
(D.2) @, 9., V,, converge uniformly on compact subsets of (0,c0) to

o, Toe?

/ i
@DV,

Our main result is the following:

Theorem 3. Let (giVF Ry x S'+— R, denote the curve corresponding to the particle
system defined above. Fix §,8' >0. Then,

lim limsup P sup |6Y (¢,0) — 6,(t,0)|>0" | =0. (3.2)
=0 N oo (1,0)€[0,T,—8]xS! ’

If further €,(t,0)— 1,0, €4(1,0) =0 for t>T,, and there exists a zy = zo(o) such
that @, (z) 20, V,:(z) <0 for all 0<z <z, then T, — 6 in (3.2) can be replaced by any
deterministic constant T > 0.

Proof. Eq. (3.2) is a straightforward consequence of Theorems 1 and 2, the fact that
the function ¢?*" is continuous, and the regularity of @,(¢,-). To see the second part
of the claim, let p, (¢, x) denote the solution of (3.1) with the functions @, and V,,
and set u, (1) = max,. g P (t,X). We claim first that there exists a §; and an & such
that for all e<egy,

o (t0) <61, some to = p, (1) <p, . (to) <01, Vi>to. (3.3)

This implies the second part of the claim since by Theorem 2,

limsup P sup  |GY (¢,0) — 6,.(¢,0)|>5 | =0
N-w (2,0)€[0,T)xS! 7

while lim; o lim, ., 7, u, . (¢) = 0.
To see (3.3), note that by the assumptions, one may find a ¢ and a d; such that

Ve<ey, 0<z<di: V,.(2)<O0, cb;é(z) >0.

Suppose (3.3) does not hold. Then there exists a f €(t,1),s1€S" with
1Py (t1,51) = 0, Oup, . (t1,51) = 0, Oxxp, . (t1,51) <0 while V(p,.(t1,51)) <0, contra-
dicting (3.1). O

Remark. Note that for Theorem 3 we have that %,(¢,0) —>,_,7,0 when ae[}, 1].



128 G.B. Arous et al. | J. Differential Equations 195 (2003) 119-142
3.3. Approximate curvature flows

We now present different candidates for the functions b, d, g defining the particle
systems of Section 3.1. The first two relate to an approximate version of the
Euclidean curvature flow, while the last one relates to a general curve-shortening
flow of parameter o with 1/« integer. Throughout, ¢>0 is a fixed parameter, and we
set W(p) = V(R(9)).

1. Approximate Euclidean curvature flow. Set

1 1

:1(r) T r+e

Then, R.1(¢) =¢(1/(1 —ep) — 1), and Z,i(¢) = (1 — &) “. Expanding, one finds
that

k
— o2 _
ge,l(l) =& 7, g&,l(k) - S(k 1 +8)7 k>2 (34)

Choosing now V,(r) = —r/(r + ¢)*, one may compute the functions b, d by noting
that with W, 1(¢) = Ve1(Re1(@)) = —@(1 — &), it must hold that

1

®
Z.1(9) Z (be1 (k) — d.1 (k) -

k=0 , g&‘l(k)

Wi(9) = —¢ +ep” =

Expanding, one finds that a possible choice for the birth and death rates is

bo1(0) = by (1) =0, bg’l(k):8(3+kul_);2ik2)’ k=2 (35)

and
d.1(0) =0, doi(1)=¢72 dp1(k)=0, k=2. (3.6)
Note that for fixed £>0, the coefficients g, i(-), 1/g.1(-),b:1(-), d:,1(-) are uniformly
bounded, and hence satisfy Assumption B.
I1. A simpler approximate Euclidean curvature flow. The jump rate, birth and death

coefficients described above suggest a further approximation of the Euclidean
curvature flow: Set

Ger()=¢2, guilk)=¢"k/(k—1), k=2,
55371(2) = 28727 Bz:,l(k) = 0, k?é2,

d.i(1)=¢2 d(k)=0, k#1. (3.7)

2]
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Note that the coefficients in (3.7) are globally bounded, and hence satisfy
Assumption B. Further, one finds that Z,;(¢) = 1 —¢log(l — &¢), and thus that

_ )

R.i(p) = (1 —e9)(1 —elog(l —ep))

Defining &, (r) = R, | (r), one sees that again, for & small, &, (r)~&"' —1/r, in the
sense that for each ry>0,

. - 1 1
limsup sup |®;(r) ——+—| =0.
e—0 r>ro : € r
One further notes that
| &P;,(r)

@2,1(”)

~21- &2®,,(r) —elog(l —ed,1(r))

concluding that

lim sup sup
-0 r>rg

=0, limsup sup =0.

e—0 r>ry

- 1
/
q)s,l(r) - V_2

- 2
(p:;/‘l(”)‘f‘r?

Further, recalling the definition W, (¢) = V.1(R.1(¢)), one finds that
Wei(e) = —Rea ()" = 9)°,

and hence, V,,(r) = —r(1 — ed,,(r))*/&*, implying by the above that

_ 1
Vs,](") +;

lim sup sup =0.

&0 r>r

IT1. An approximate curve-shortening flow. Fix L = 1/u an integer, and set

1 1
q)soc = T T N
a7) e (r+éb)

Then, R,,(¢) = e-(1/(1 —ep)" — 1). We also fix V,,(r) = —r/(r + &-)' ™, and hence

k — d,
| (0) Z O (beu(k) — d.,(k)) _é((l

1

L+1

= —ep)"" — (1 —29)) =~ Pu(c0),
Z;y =0 gc,u(k)! &

where P, is a polynomial of degree L + 1 in ¢. Expanding, one finds that
k p

boa(k) = dug(k) = dre/ ™ goa(k = £ + 1)+ g (k), (3.8)
/=1
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where
0, /=0,
d/ = _La (= 17 (39)
<L+1>L~-(Lﬂ+2—/)<—1>/, /=2,

and one notes that the sum in (3.8) is over at most L+ 1 terms since L is an
integer and thus d, = 0 for /> L + 1. It thus only remains to compute the functions
gex(k), a task considerably more involved than in the Euclidean case. Write

log Z., (@) = > ,° a0, with a, = L(L+1)---(L+¢—1)¢*t/¢/!. Expanding
Z.o(@) = Y otk", it holds that g, (k) = tx_1 /1, with

|4]
1
tk:;WH a;,, (3.10)
i=1
where the summation is over the set ./ of all partitions 2 = (41, ..., 4);) of k, i.e.

tuples of integers with A; >/, >--- >4, >1 such that ) /; = k. We now have

Lemma 2. There exist constants c¢,,, C,, such that for all k,
Cen ng:,ot (k) < Cl;,oz'

Due to Lemma 2 and (3.8) (recall L is an integer!), the functions b,,(-) and d,,(-) are
also uniformly bounded, and Assumption B holds for the corresponding particle
system.

We conclude this paragraph with

Proof of Lemma 2. Since for Ae /7 it holds that Y 1, = k, we have that for k=2,

A
goa() = ot 1B G H}L 0:ol20) N
e BEIT 0ta) M

where Ny = |A"k|, E denotes the uniform measure over A"y and Q,,(-) is a rational
function; hence,

Qs,a (n + l) Qsa(”)

sup <00, SUup —— << 0.
neN Qs,x(n) neN Qe,fx(n + 1)

Construct an injection I of /;_; into a subset of .47, by increasing the first
component A1 =1 of A by 1, ie. I(4y,...,4p) = (41 +1,...,2). In particular, 7
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leaves |A| unchanged. Then,

g x(k) gl Z(/1,,/-,\,,1\}1TQ£¢X (/Ll) HlA:‘Z Qs,oc(},i) gl sup Q&O( (I”l)
€ E/V‘HWl\!Qw(ll +1) Hlilz 0,4(2) € neN Qea(n+ 1y

yielding the claimed upper bound on g, ,(-). To see the complementary lower bound,

for any (41, ...,4;) €A%, set j; such that Ay = Jy = -+ = J;; > 4;,11, with j; = |]]
if 21 = --- = 4. Construct a map J from A" to A", by reducing the 4;, part by
one, 1.€.

J(A, oo dp) = (A oy Ay = 1, A, oo

s

Note that the map J is two to one. Since |J(4)|<|4|, we have by an argument as
above that

1 . Qw(" — 1>
gs,cx(k)>28 max(1, Qw(l)) r%relg Qw(”) 7

completing the proof of the complementary lower bound. [

Remark. In the case of o =1 (affine curve shortening [14]), one checks that
ge13(k)<1/e.

4. Proof of Theorem 2

As mentioned above, the strategy parallels that of the proof of the standard
hydrodynamic limit for zero range processes, as described in [9], with some
additional elements, adapted from [11], due to the presence of birth and death events.
Set vy )N = Qiery Yoy The main step in the proof of Theorem 2 consists of
N
establishing

Proposition 2. Let Assumptions B and C hold. Then,

. 1
lim sup NH(,umVp(t,-),N) =0.

N—

Indeed, let A4 denote the event

: % 3 n(i)G(%) — [ Gop(t,x) dx

N

>5}.
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Note that, by an inequality of Varadhan, see [11, p. 367],

vlog2 + 4 H (i [voi )
Slog(1+1/v,(.)n)

w (4)<

In view of Proposition 2, it thus suffices to show that

1
lim sup ﬁlog Vo). (A) <0. (4.1)

N- o

The later estimate is a consequence of the product structure of v,y and of the
existence of exponential moments as described in part (a) of Lemma 1. Indeed, the
random variables Z; = n; — p(¢,i/N) are, under v, v, independent, centered, and
there exists a 0" such that

0°1Z;
sup E‘,p(,_)_N(e | |)< 0.
it<T

Therefore, for any Ge C(S'), there exists a C>0 such that for all a<ay(G),

sup E, (e2CiIN)Ziy (4.2)

it<T

Thus, by Chebycheff’s inequality, we conclude that for every a>0,

V(N (A) <€ NOE, (e OO~ Gt

Approximating the last integral by a Riemann sum, we conclude that for every ¢>0
we can find a Ny(¢) such that for N> Ny(e),

1 1 : :
~ log vy gn(A)< —ad+e+ N Z log Ev’l“__)yN(e“G(’/N)Z‘)
ieTy
< —ad+e+ Cd,

where the second inequality is due to (4.2). Choosing a<d/C one deduces (4.1),
which concludes the proof of Theorem 2 modulo that we still need to prove
Proposition 2.

The proof of Proposition 2 is provided in Section 4.2, after we first present in
Section 4.1 a replacement lemma appropriate to our needs.

4.1. Replacement lemma

The main a priori estimate needed in our derivation is the following replacement
lemma (compare with [11, Proposition 2.1]).
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Proposition 3. Let Assumptions B and C hold. Suppose h:N—R is sublinear at
infinity, i.e. limsup,_, , h(k)/k = 0. For ke N, set

ST 2 k) ~ @)
i<k

0 =5 o ali) Ve =

Then,

k—

lim sup hmsup {NZ/ Vi(n } 0. (4.3)

Proof. Following the proof of [11, Lemma 2.2], we have that

J S U@V (dn)
H(p nIvin) <H(pg yvin) + Uecb?lTlP . log[ T U ) } (4.4)
Recall that
N-1
df/S Unvin(dn) = /{g (n(i) = 1) = b(n(i))
i=0
+% B d(n(i))] U(n)vin(dn). (4.5)

Hence, using Assumption (B.3), (4.4) and the Gronwall lemma, one concludes that
for any 0<s<t<T,

H(p, yvin) <H(ug nvin) + (1 —s)CoN. (4.6)

We thus conclude that f; y = du, y/dvi n exists.
Define, for any f defined on T, the Dirichlet form Dy[], as

D=5 Y g ~ TP

i~j
(ij)eTyxTy

A repeat of the proof of [11, Lemma 2.3] yields

N2D0[ /ﬁ ds] H(po yviv) + C3N. (4.7)
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Let
Axe ={ NP R [t 1.
DO[fN]g%,/n(O)fN(n)vlvN(dr])<C,fN is shift invariant}.

Copying the argument of [11, p. 370], it follows that Proposition 3 holds as soon as
one can show that for any C>0,

limsup limsup sup / Vie(m) (0N (n)vi w(dy) = 0. (4.8)

k— o0 N—oow fNedyc

Since on Ay ¢ it holds that [#5(0)f™(n)vi n(dn)<C, it follows that (4.8) holds as
soon as for any a>0,

limsup limsup sup / SN Vi(n)(0) — an* (0)]vi v (dn) <0. (4.9)

k— o0 N—oow fNedyc

Note that due to Assumption (B.2), it holds that E, (1x<x)— - 0 for any fixed k.

Using this and the sublinear assumption on A, it follows that lim sup,,_, ., |/A(x)|/o = 0.
Using again the sublinearity of /4, one concludes that

lim sup w =0.

4.10
"k 0)»o N (0) ( )

and hence, (4.9) holds as soon as we show that for any constant C' >0,

limsup limsup sup /fN(V/) Vie)(0) 10y < ovin(dny) = 0. (4.11)

k— o N—- fNedyc

To prove (4.11), we proceed by conditioning. Let v, x x (respectively, Vi, ) denote
the restriction of v; y to the (respectively, complement of the) box By = ['—k7 k] (we
assume N >2k + 1 such that By, is identified as part of the torus Ty), and note that
VikN = Vi because vi y is a product measure. Set

(& /f My, =3V gy (dn)

and define the Dirichlet form Dy on functions (¥ : N2 - R by

D=3 X [ e - @)

jj+leBA

oY [ o+ ma/eEE ) - Vi@

J:/'HEBI:




G.B. Arous et al. | J. Differential Equations 195 (2003) 119-142 135

then, as in [11, p. 372], using that V} depends on # only through its restriction to By,
it follows that

sup / Viem) O™ ()10 < cvin(dn) < sup / Vielm) 0501 o)< o1 (),

Nedy ok gk
fNedy.c { eAR,V_’C

where
2k
Ao ={¢ts 120, [ Tomatan = 1.0 € [0 Gmslan <C.

Consider A% . as a set of densities, and hence identify it with a subset of M;(N**!).

Then, Aé‘v,c is compact under the weak topology of MI(NZI‘“), and the lower
semicontinuity of D[] yields that

limsup sup /Vk(17)(0)Ck<17)lgk(0)<C/Vl’k(drl)

N-ooo gk k
—O Tedy o

< sup / Vie(m) )2 (m) Ly 0y < cvix(di) =: i,

CkeAé
where
e {ck: >0, [ mmatan = 1,048 =0, [ nk<0>ck<n>v1,k<dn><C}~

We thus need to prove that lim sup, _, ., ./, = 0. Toward this end, we do not use the
argument in [11] but rather adapt [9, p. 89]. Indeed, let v{7K denote the law v,
conditioned on #*(0) = j - (2k + 1). Then,

i< s [ V], (an). (4.12)
J<@k+1)C ’

Noting (4.10) and repeating verbatim the equivalence of ensemble argument in [9,
pp. 89-90], we conclude that limsup,_ ., o/ =0, completing the proof of
Proposition 3. [

4.2. Relative entropy convergence: proof of Proposition 2

We adopt the relative entropy method, as described in detail in [9, Chapter 6].
We emphasize in this presentation the ingredients which differ from the derivation
there.
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Set Yy(t) = dv,)n/dvsn, @>0 arbitrary. Repeating the computation in
[9, pp. 120—-121], taking into account the birth—death rates, we conclude that

= I+ 1+ 11+ IV + o(N),

where F(t,%) = A;;’Eit’,_vﬁ?

, and where the o(N) term is uniform in o in compacts. Note

<k

next that

I Edk+1) ¢f 1,
Z(@) 2 gtk ) g1~ oo

and

S bk — Dg(k)-2— = L £, (8),

1 o0
Z(p) & g(k)! ¢

and thus

(d(' + P) (a) = =19, (4.13)

(b(- = Dg(-))(a@) = V. (a)®(a). (4.14)

We next wish to replace functions depending on 5 by functions depending on #*.
Toward this end, note that by (4.6),

H(p, yvin)<CN
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and hence, for any bounded test function f(x),
E,, B<logE, ,(e!) + C3N.

Note next that for some y>0,

1 7y ) .
lim sup Nlog E, | e =logkE,,, (eM(O)) < 0.

N—

Hence, by dominated convergence,

1
limsup sup E,, n(i)< oo.
N—-ow  1e[0,T) ! \N,EZTN ()

In particular, for any smooth test function 7(x), for each fixed k,

lim sup Z / — 1" () (dn) = 0

N -

137

(4.15)

(4.16)

with the convergence rate depending only on the modulus of continuity

of /().

We next note that the functions ¢(-), () b(- — 1)g(-), b(-) satisfy the assumptions
of Proposition 2. Using the (unlform) space regularity of p(¢,-), the smoothness
(C? property) of @(-) assured by Lemma 1[(b)], and summation by parts using (4.16),

we conclude, using (4.13), that

n< Y /F(t,%){q;(nk(x))—cb

xeTy

()0 o(oy

/(o)

& / SO0 ()
reT /V+ [ ( (t({)))) - 1}”I,N(d’7)

/ (1305 (2 (3 7 (o 1:37) rntan)

+0(

where the error term in (4.17) is uniform in 7€[0, 1].

(4.17)
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Rearranging the terms in (4.17), and setting M(a,b) = ®(a) — &(b)—
&' (b)(a — b), we get

-y / A >M<nk A
)
)

> [awey )

L ” u(y <x>,p<r%>>um<dm
> I |
x%<p<7§>>uw<dm
-5 [ b -o(o3)]
x k

[qs(p(z,; — 00 (x)) |, (dn)

) — Vo (o1
_ z; /[V+('1 (x)qi(p(:xg)p(t N))} (¢(nk(x)) _‘I’(P(fa%)))uuv(dn)
:/Z ZA (x, M n(dn) + o(N), (4.18)

where again the error term is uniform in #€[0, 7], and we have used (4.13) to assert
that sup, 2=(x) < o0.

The proof of the following proposition follows the proof of [9, Proposition 6.1.6]
and is therefore omitted. Note that introducing the supremum over ¢ in the statement
does not modify the proof due to the uniform bound on p(¢,x),2€(0, 7], xeS'.

Proposition 4. Let G(-,-,-): [0, T] x S' x Ry =R, be continuous, such that for some
C() >0

(a) Sup(z,u)E[O,T]xSl G(ta u, )”) <Co + CO)H Le R+;
(®) sup, e po.1ixst G(t,u, 1) < Cod*.

li—p(tu)| <6

Then, there exists a 7o = 70(Co) such that

1
limsup limsup sup Nlog Ey, exp{y’o Z G(t, x, nk(x))} <0.

k— o0 N-oow  1e0,T] xeTy
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Equipped with Proposition 4, let us complete the proof of Proposition 2. Indeed,
note that

; Af(x»'?)<Co\1‘M(n"(X),p(t%))\ (4.19)
while

6
> Ailx,m)<Cos

i—4

r oDl D)) 6o

where Q is a smooth function, bounded by 1, with Q(0) = 0, and we used the fact
that V_ is bounded which is assured by Assumption (B.3). Fixing 7, small enough,
and with a term o(N) uniform in ¢,

1 t
V= %<o(N)+— 75 ds
71 Jo

1 t
+— dslog E,
71 Jo

p(t,).N

eXp{y'l > ZAf(x,n)H-

Xe TN i=1

Using Proposition 4 and (4.19), (4.20), it follows that

6
exp{y‘l > ZAl(x,n)Hso

xeTy i=1

. . 1
limsup limsup sup —Ilogk,

)N
koo Noow efo,r] N &

and thus, Gronwall’s lemma yields that

limsup sup Y. O

N-oow 1e[0,7] N

5. Conclusions and future research

In this paper, we formulated certain stochastic approximations to planar
shortening flows for convex curves. More precisely, we constructed a stochastic
particle system whose profile defines an atomic measure on the unit circle such that
the corresponding curve is a convex polygon. We then showed that the evolution of
this polygonal curve converges (in the limit of a large number of particles) to curve
evolution under the given curve-shortening flow.

We would like to suggest several possible research directions to extend
these results. First of all, one can consider evolutions of non-convex curves. More
precisely, it is known that for o = 1,% a smooth non-convex embedded curve
becomes convex under the corresponding curve-shortening flow, and then converges

to a point of appropriate ““shape’ (circular for o = 1 [8], and elliptical for o = % [3D.
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It would be quite interesting to see if one could extend our stochastic framework to
non-convex curves in this setting.

Further, as alluded to above, our work here is partially motivated by the result
that the uniform measure on the set of convex polygons of area bounded by 1 which
encircle the origin and possesses vertices on the lattice n~'Z> satisfies a large
deviation principle with rate function related to affine arc length [17]. Hence, we
believe that natural (random) dynamics for these polygons should be related to
evolution according to affine curve shortening. In our approach here, there does not
seem to be anything special about the exponent o :%. Thus, more research is
necessary to see if one can indeed find ““affine invariant’ stochastic approximations
to the affine curve-shortening evolution.

Appendix. Proofs of Proposition 1 and Theorem 1

We begin by recalling the following maximum principle, which is a straightfor-
ward adaptation to the periodic setting of [13, Theorem 12, p. 187]:

Lemma A.1. Assume @,V satisfy Assumption A and let my(-), my(-) e C**F(S") satisfy
my<my. Let p;(t,x) satisfy p;(0,x) = m;(x),i= 1,2, and Lp,(t,x) < Lp,(t,x), for all
(<T. Then, py(t,x)<pa(t,) for (6,x)€[0, T] x S.

The only issue preventing one from applying directly classical existence and
uniqueness results for quasilinear parabolic equations is the fact that &'(.) is
not bounded away from 0 at infinity, and hence L is not a strictly parabolic operator.
To circumvent this difficulty, assume 0<p; <m(x)<p,<oo for some constants
Wi, i =1,2, and let w;(¢) satisfy the ODE

W) _ v ). o) = my (A1)

Since V is Lipschitz, bounded and ¥/(0)>0, it holds that O<u, () <p,(£)<p, +
[| V]|t for all £=0. An application of Lemma A.1 then yields that any solution p(#, x)
of (2.2) satisfies O<pu,(¢)<p(t,x)<p(f). Fix T<oo and 6>0 such that
o<min, (o 7y (1) <pp + || V|| T <1/, and set @° be a smooth function with &°(u) =
@(u) for ue(d,1/9], such that min,cp, (#°)'(x)>0. Let L denote the operator L of
(2.1) with @° replacing @. By [10, Theorem 12.14], the equation L°p°(z,x) =0,
0°(0,x) = m(x) possesses a unique solution (the hypotheses of [10, Theorem 12.14]
are checked to hold for the operator L’ considered as an operator defined on
C'2([0, T] x R), with the initial condition m extended by periodicity to R, with the
resulting unique solution being periodic and defining uniquely a periodic solution p°
which then can be considered as defined on [0, 7] x S'). By Lemma A.l and the
argument above, p°(t,x)€[d,1/9] for t<T. Hence, p° satisfies (2.2), establishing the
claimed existence since 7'>0 is arbitrary. The uniqueness follows by noting that any
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solution of (2.2) satisfies, by the above a priori bounds, that @(p(t,x)) = &°(p(t, x))
for < T, and hence is the (unique) solution of the equation L°p?(¢, x) = 0.

Proof of Theorem 1. Fix ye(0, 1] and set g(¢,x) = p(¢,x)e’". A direct computation
yields that

L¥(p) = [Duxpe” (@' (p) — @,(0))] + [(¢"'Dup)* (7' D" (p) — ¥/ (p))]
+1e"V(p) = Ve(p)] +7p
=L+ L+ L5L+yp. (A2)

We can find a constant C = C(6) >0 independent of the values of y and ¢ such that

1
| LX) AP X) 25 t,x)vp(t,x)<C,
<tvx>e[lgv1}r15]><sl Pt X) APt x) C (t,x)el[’(l;}%)_(rﬁ]xy p(t,x) v p(t, x)
max  [|0wp(t,x)| + |9 (p(t,x)] + | DL (5(t, X)) || < C.

(t,x)€[0,7—0]xS!

One therefore concludes the existence of a constant C; = C;(J) independent of ¢ or y
such that

lim sup max w <Cyy
om0 (6X)€(0,T-8]xS! s S

Setting 7 = (T — 0) A1/2CC), one concludes the existence of a function &(-),
depending on C and the rate of convergence of @, @”, ¥, only, such that for all

e<e(y),
0= Lip,(t,x)<Lp(t,x), (1,x)e[0,T1] x S".

The maximum principle (Lemma A.l above) then yields that for g<eg(y), and
te[0, T1], it holds that p®(z,x)<e''p(¢,x). Repeating the argument with ye[—1,0),
and noting that 77 does not depend on ¢, the conclusion of the theorem follows
on [0,T)] x S'. The extension to [0,7 —&] x S' is immediate by noting that
the constants C,C; do not depend on ¢, and repeating the argument above
[ (T —6)/T] times. O
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